Instabilities and local bifurcations. Elements of theory

Gérard looss

IUF, Université de Nice, Laboratoire J.A.Dieudonné, Parc Valrose, F-06108 Nice Cedex02

M.Haragus, G.Iooss. Local bifurcations, center manifolds, and normal forms in infinite dimensional systems (329p.). Springer UTX, 2011

$$\frac{du}{dt} = f(u, \mu), \ f(0, 0) = 0, \ \frac{\partial f}{\partial u}(0, 0) = 0, \ \mu \text{ parameter}$$
Saddle - node bifurcation
Assume f is \mathcal{C}^k , $k \ge 2$, in a neighborhood of $(0, 0)$, and
$$\frac{\partial f}{\partial \mu}(0, 0) =: a \ne 0, \quad \frac{\partial^2 f}{\partial u^2}(0, 0) =: 2b \ne 0.$$
As $(u, \mu) \rightarrow (0, 0)$, f has the expansion
$$f(u, \mu) = a\mu + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

$$(u, \mu) = u + bu^2 + o(|\mu| + u^2)$$

Dim 1 - Pitchfork bifurcation

Assume f is C^k , $k \ge 3$, in a neighborhood of (0,0), and satisfies

$$f(-u,\mu) = -f(u,\mu), \quad \frac{\partial^2 f}{\partial \mu \partial u}(0,0) =: a \neq 0, \quad \frac{\partial^3 f}{\partial u^3}(0,0) =: 6b \neq 0.$$

Hence, as $(u, \mu) \rightarrow (0, 0)$, f has the expansion $f(u, \mu) = a\mu u + bu^3 + o[|u|(|\mu| + u^2)]$, u = 0 is an equilibrium for all μ .

Dim 2 - Hopf bifurcation in \mathbb{R}^2

$$\frac{du}{dt}=\mathbf{F}(u,\mu), \ \mathbf{F}(0,0)=0,$$

F is C^k , $k \ge 3$, in a neighborhood of (0,0). Define $\mathbf{L} := D_u \mathbf{F}(0,0)$. Assume **L** has a pair of complex conjugated purely imaginary eigenvalues $\pm i\omega$, $\omega > 0$: $\mathbf{L}\zeta = i\omega\zeta$, $\mathbf{L}\overline{\zeta} = -i\omega\overline{\zeta}$. Normal form theorem (seen later): for any integer $p \le k$, and any μ sufficiently small, there exists a polynomial $\mathbf{\Phi}_{\mu}$ of degree p in (A, \overline{A}) , with complex coefficients functions of μ , taking values in \mathbb{R}^2 , such that

$$\mathbf{\Phi}_0(0,0)=0, \quad \partial_A \mathbf{\Phi}_0(0,0)=0, \quad \partial_{\overline{A}} \mathbf{\Phi}_0(0,0)=0,$$

$$u = A\zeta + \overline{A\zeta} + \mathbf{\Phi}_{\mu}(A, \overline{A}), \ A \in \mathbb{C},$$

transforms the system into the differential equation

$$\frac{dA}{dt} = i\omega A + AQ(|A|^2, \mu) + o(|A|^p), \ Q \text{ polynomial in } |A|^2, Q(0,0) = 0$$

Hopf bifurcation - continued

$$\frac{dA}{dt}=i\omega A+A(a\mu+b|A|^2)+o(|A|(|\mu|+|A|^2)),$$

Assume $a_r \neq 0$ and $b_r \neq 0$. Truncated system: set $A = re^{i\phi}$,

$$\frac{dr}{dt} = r(a_r\mu + b_r r^2) \text{ (pitchfork bifurcation for radial part)}$$

$$\frac{d\phi}{dt} = \omega + a_i \mu + b_i r^2, \text{ (frequency of bifurcated periodic solution)}$$

Hyperbolic situation in \mathbb{R}^n

$$\frac{du}{dt} = F(u), \ F(0) = 0, \ DF(0) = L$$

left: spectrum of L, center: linear situation, right: nonlinear situation

Hyperbolic situation in \mathbb{R}^n continued

$$u = X + Y, \ X = P_+ u \in E_+, Y = P_- u \in E_-$$

$$\frac{dX}{dt} = L_+X + P_+R(X+Y)$$
$$\frac{dY}{dt} = L_-Y + P_-R(X+Y)$$

Unstable manifold \mathcal{M}_+ : solve in $u(t), t \leq 0$, with $u(t) \to 0$ as $t \to -\infty$

$$u(t) = e^{L_+t}X + \int_0^t e^{L_+(t-s)}P_+R(u(s))ds + \int_{-\infty}^t e^{L_-(t-s)}P_-R(u(s))ds$$

Then, by implicit function theorem, $u(t) = \Phi_+(X, t)$, and $u(0) = \Phi_+(X, 0) = X + \Psi_+(X)$, with $\Psi_+(X) \in E_-$

Center manifold in \mathbb{R}^n

Pliss 1964, Kelley 1967, Lanford 1973, Henry 1981, Mielke 1988, Kirrmann 1991, Vanderbauwhede - Iooss 1992

$$\frac{du}{dt} = Lu + R(u,\mu), \ (u,\mu) \in \mathbb{R}^n \times \mathbb{R}^m, R(0,0) = 0, \ D_u R(0,0) = 0.$$

spectrum of $L = \sigma = \sigma_{-} \cup \sigma_{0}$ Hypothesis: σ_{0} = finite number of eigenvalues of finite mutiplicities $sup_{\lambda \in \sigma_{-}}\lambda < -\gamma < 0$ (gap assumption) $\mathbb{R}^{n} = E_{0} \oplus E_{-}, \ u = X + Y, \ X = P_{0}u, Y = P_{-}u$

left: linear case for $\mu = 0$, asymptotic solutions $\in E_0$, right: non linear case

Theorem:

$$\begin{aligned} \mathcal{M}_{\mu} &= \{ u = u_0 + \Psi(u_0, \mu), \ (u_0, \mu) \in E_0 \times \mathbb{R}^m \} \\ \Psi &\in \mathcal{C}^k(\mathcal{O}_0, E_-), \ \mathcal{O}_0 \text{ neighb of } 0 \text{ in } E_0 \times \mathbb{R}^m \\ \Psi(0, 0) &= 0, D_{u_0} \Psi(0, 0) = 0. \end{aligned}$$

 \mathcal{M}_{μ} locally invariant and *locally attracting*. Idea of proof: Even though u(t) stays bounded for $t \in \mathbb{R}$, the first term and the integral below with L_0 may grow polynomially in t as $t \to -\infty$.

$$u(t) = e^{L_0 t} X + \int_0^t e^{L_0(t-s)} P_0 R(u(s)) ds + \int_{-\infty}^t e^{L_-(t-s)} P_- R(u(s)) ds.$$

Need of a (smooth) "cut-off" function on E_0 , modifying and making the system linear for its part in E_0 , outside a ball of small radius. This allows to work in a space of functions growing at infinity. New complications due to the fact that we deal with such functions (which may grow at $-\infty$ with a small exponential).

G. looss (IUF, Univ. Nice)

Center Manifolds in infinite dimensions

$$\frac{du}{dt} = Lu + R(u, \mu)$$
$$R(0, 0) = 0, \ D_u R(0, 0) = 0$$

L linear bounded $\mathcal{Z} \to \mathcal{X}$,

 \mathcal{Z} cont. embedded in \mathcal{X} (both Hilbert spaces)

 $R: (\mathcal{Z} \times \mathbb{R}^m) \to \mathcal{X}$ of class $\mathcal{C}^k, k \ge 2$ in a neighborhood of 0 Hypothesis:

(i) (gap assumption) spectrum σ of L = σ₀ ∪ σ₋,
For λ ∈ σ₀, Reλ = 0,
sup_{λ∈σ-} Reλ < -γ < 0;
(ii) σ₀ = finite number of eigenvalues of finite mutiplicities

Hypothesis on the linearized system

$$||(i\omega\mathbb{I}-L)^{-1}||_{\mathcal{L}(\mathcal{X})} \leq \frac{C}{|\omega|} \text{ for } \omega \in \mathbb{R}, |\omega| \text{ large.}$$

Then the following properties (iii) and (iv) are satisfied. Define:

$$\begin{split} \mathcal{E}_{0} &= P_{0}\mathcal{X} = P_{0}\mathcal{Z}, \ \mathcal{Z}_{h} = P_{h}\mathcal{Z}, \mathcal{X} = \mathcal{E}_{0} \oplus \mathcal{X}_{h}, \mathcal{Z} = \mathcal{E}_{0} \oplus \mathcal{Z}_{h}, \eta \in [0, \gamma] \\ (\text{iii)} \ \frac{du_{h}}{dt} &= L_{h}u_{h} + f, \ f \in C^{0}(\mathbb{R}, \mathcal{X}), sup_{t \in \mathbb{R}}e^{\eta t}||f(t)||_{\mathcal{X}} < \infty, \\ \text{Then, there exists a unique } u_{h} &= K_{h}f, \text{ such that} \\ K_{h}f \in C^{0}(\mathbb{R}, \mathcal{Z}), sup_{t \in \mathbb{R}}e^{\eta t}||K_{h}f(t)||_{\mathcal{Z}} < C(\eta)sup_{t \in \mathbb{R}}e^{\eta t}||f(t)||_{\mathcal{X}}, \\ C(\eta) \text{ continuous on } [0, \gamma]. \\ (\text{iv)} \ \frac{du_{h}}{dt} &= L_{h}u_{h}, u|_{t=0} \in \mathcal{Z}_{h}. \end{split}$$

Then, there exists a unique $u_h \in C^0(\mathbb{R}^+, \mathcal{Z}_h), ||u_h||_{\mathcal{Z}} \leq c_\eta e^{-\eta t}, t \geq 0$.

Reduced system for asymptotic dynamics and Symmetries

$$\frac{du_0}{dt} = L_0 u_0 + P_0 R(u_0 + \Psi(u_0, \mu), \mu) := f(u_0, \mu)$$

$$f(0,0) = 0, D_{u_0} f(0,0) = L_0, \text{ spectrum of } L_0 : \sigma_0$$

Frequent case: 0 is a solution of the system for any μ $R(0,\mu) = 0$, hence $\Psi(0,\mu) = 0, f(0,\mu) = 0$ and

the linear operator $A_{\mu} := D_{u_0} f(0, \mu)$ has the eigenvalues close to the imaginary axis of the linearized operator $L_{\mu} := L + D_{\mu} R(0, \mu)$

12 / 34

Reduced system for asymptotic dynamics and Symmetries

$$\frac{du_0}{dt} = L_0 u_0 + P_0 R(u_0 + \Psi(u_0, \mu), \mu) := f(u_0, \mu)$$

$$f(0,0) = 0, D_{u_0} f(0,0) = L_0, \text{ spectrum of } L_0 : \sigma_0$$

Frequent case: 0 is a solution of the system for any μ $R(0,\mu) = 0$, hence $\Psi(0,\mu) = 0, f(0,\mu) = 0$ and

the linear operator $A_{\mu} := D_{u_0} f(0, \mu)$ has the eigenvalues close to the imaginary axis of the linearized operator $L_{\mu} := L + D_u R(0, \mu)$

Presence of symmetry

$$TLu = LTu, TR(u, \mu) = R(Tu, \mu)$$

$$T|_{\mathcal{E}_0} := T_0 \text{ is an isometry}$$

Then

$$T\Psi(u_0,\mu) = \Psi(T_0u_0,\mu), \text{ for } u_0 \in \mathcal{E}_0$$

$$T_0f(u_0,\mu) = f(T_0u_0,\mu).$$

G. looss (IUF, Univ. Nice)

water waves

Computation of center manifold and reduced system

NB. We compute Taylor expansions, in powers of $(u_0, \mu) \in \mathcal{E}_0 \times \mathbb{R}^m$

$$D_{u_0} \mathbf{\Psi}(u_0,\mu) \frac{du_0}{dt} = \frac{du_h}{dt}$$

replace $\frac{du_0}{dt}$ by $L_0 u_0 + P_0 R(u_0 + \Psi(u_0, \mu), \mu)$, and replace $\frac{du_h}{dt}$ by $L_h \Psi(u_0, \mu) + P_h R(u_0 + \Psi(u_0, \mu), \mu)$ and *identify powers of* (u_0, μ) .

13 / 34

Computation of center manifold and reduced system

NB. We compute Taylor expansions, in powers of $(u_0, \mu) \in \mathcal{E}_0 \times \mathbb{R}^m$

$$D_{u_0} \Psi(u_0,\mu) \frac{du_0}{dt} = \frac{du_h}{dt}$$

replace $\frac{du_0}{dt}$ by $L_0 u_0 + P_0 R(u_0 + \Psi(u_0, \mu), \mu)$, and replace $\frac{du_h}{dt}$ by $L_h \Psi(u_0, \mu) + P_h R(u_0 + \Psi(u_0, \mu), \mu)$ and *identify powers of* (u_0, μ) . Example: quadratic order in u_0 : $f(u_0,\mu) = L_0 u_0 + P_0 R_{2,0}(u_0) + P_0 R_{0,1}(\mu) + h.o.t.$, h.o.t. depends on Ψ $D_{u_0}\Psi_{2,0}(u_0)L_0u_0 - L_h\Psi_{2,0}(u_0) = P_hR_{2,0}(u_0)$ leads to $\Psi_{2,0}(u_0) = \int_0^\infty e^{L_h t} P_h R_{2,0}(e^{-L_0 t} u_0) dt.$ This may become tedious, and may lead to a complicate vector field in \mathcal{E}_{0} . in case of dimension > 1, specially if orders > 2 are required. Our purpose now is to simplify the reduced system, in using Symmetries and Normal form theory. Université Nice sorbia antipolis

Normal forms

Poincaré, Birkhoff, Arnold, Belitskii, Elphick et al...

 $p \geq 2, \exists$ polynomial $\Phi_{\mu} : \mathcal{E}_0 \to \mathcal{E}_0$, of degree p and a neighborhood \mathcal{O}_0 of 0 in $\mathcal{E}_0 \times \mathbb{R}^m$, such that the local change of variable in \mathcal{E}_0

$$u_0 = v_0 + \Phi_\mu(v_0)$$

transforms the reduced system into a new system where \mathbf{N}_{μ} is a polynomial of degree p such that

$$\frac{dv_0}{dt} = L_0v_0 + \mathbf{N}_{\mu}(v_0) + \rho(v_0,\mu),$$

$$\begin{array}{rcl} \mathbf{N}_0(0) &=& 0, \quad D_{v_0}\mathbf{N}_0(0) = 0 \\ e^{L_0^*t}\mathbf{N}_\mu(v_0) &=& \mathbf{N}_\mu(e^{L_0^*t}v_0), \forall (t,v_0) \in \mathbb{R} \times \mathcal{E}_0, \\ \rho(v_0,\mu) &=& o(||v_0||^p). \end{array}$$

NB. In case of analytical vector fields, there are results optimizing the degree p, giving a rest ρ exponentially small (G.I., E.Lombardi 2005)

Equivalent characterization:

$$D_{
u_0} \mathbf{N}_\mu(
u) L_0^*
u = L_0^* \mathbf{N}_\mu(
u)$$
 for all $u \in \mathcal{E}_0$ and $\mu \in \mathbb{R}^m$

Equivalent characterization:

$$D_{
u_0} {f N}_\mu(
u) L_0^*
u = L_0^* {f N}_\mu(
u)$$
 for all $u \in \mathcal{E}_0$ and $\mu \in \mathbb{R}^m$

Case of a linear operator $L + R_{\mu}$, $R_0 = 0$ interesting when L is not diagonalizable. Then Φ_{μ} is linear (only degree 1 terms); the normal form $L + \mathbf{N}_{\mu}$ is also linear, and

$$\mathbf{N}_{\mu}L^{*}=L^{*}\mathbf{N}_{\mu}.$$

Equivalent characterization:

$$D_{v_0} \mathsf{N}_\mu(v) L_0^* v = L_0^* \mathsf{N}_\mu(v)$$
 for all $v \in \mathcal{E}_0$ and $\mu \in \mathbb{R}^m$

Case of a linear operator $L + R_{\mu}$, $R_0 = 0$ interesting when L is not diagonalizable. Then Φ_{μ} is linear (only degree 1 terms); the normal form $L + \mathbf{N}_{\mu}$ is also linear, and

$$\mathbf{N}_{\mu}L^{*}=L^{*}\mathbf{N}_{\mu}.$$

Cases with Symmetries Assume that the nonlinear system is equivariant under an isometry T in \mathbb{R}^n Then, polynomials \mathbb{N}_{μ} and Φ_{μ} commute with T.

Normal forms - idea of proof

du/dt = Lu + R(u), $u \in \mathbb{R}^n$, p is a given number ≥ 2 . No μ here, for simplification.

$$R(u) = \sum_{2 \le q \le p} R_q(u^{(q)}) + o(||u||^p),$$

 R_q is q-linear symmetric on $(\mathbb{R}^n)^q$. Analogous notation for Φ_q and \mathbf{N}_q . Differentiate $u = v + \Phi(v)$ with respect to t, and replace du/dt and dv/dt:

$$(\mathbb{I} + D\Phi(v))(Lv + \mathbf{N}(v) + \rho(v)) = L(v + \Phi(v)) + R(v + \Phi(v))$$

Identify powers of v:

$$\begin{aligned} \mathcal{A}_L \Phi_q &= Q_q - \mathbf{N}_q, q = 2, 3, \dots p; \ Q_2 = R_2 \\ \mathcal{A}_L \Phi(v) &: D \Phi(v) L v - L \Phi(v) \text{ for all } v \in \mathbb{R}^n. \end{aligned}$$

 $Q_q - \mathbf{N}_q \in ker(\mathcal{A}_{L^*})^{\perp}$, i.e. we can choose $\mathbf{N}_q = P_{ker(\mathcal{A}_{L^*})}Q_q$, and $\Phi_q \in ker(\mathcal{A}_L)^{\perp}$ (makes the solution uniquely determined).

Computation of Center Manifold and Normal form

Center manifold theorem gives

$$u=u_0+oldsymbol{\Psi}(u_0,\mu), u_0\in\mathcal{E}_0$$
 and $oldsymbol{\Psi}(u_0,\mu)\in\mathcal{Z}_h$

Normal form applied to the reduced system for $u_0 \in \mathcal{E}_0$:

$$u_0 = v_0 + \mathbf{\Phi}_{\mu}(v_0), \ \frac{dv_0}{dt} = L_0 v_0 + \mathbf{N}_{\mu}(v_0) + \mathbf{\rho}(v_0, \mu).$$

Consequently, we can write

 $u=v_0+\widetilde{\Psi}(v_0,\mu),$

with

$$\widetilde{\Psi}(\textit{v}_{0},\mu)=oldsymbol{\Phi}_{\mu}(\textit{v}_{0})+oldsymbol{\Psi}(\textit{v}_{0}+oldsymbol{\Phi}_{\mu}(\textit{v}_{0}),\mu)\in\mathcal{Z}.$$

 $\Psi(v_0,\mu)$ belongs to the entire space \mathcal{Z} , and not to \mathcal{Z}_h .

17 / 34

Computation of Center Manifold and Normal form - continued

Differentiating with respect to t and replacing du/dt and dv_0/dt , leads to

$$\begin{split} & D_{v_0} \widetilde{\Psi}(v_0, \mu) L_0 v_0 - L \widetilde{\Psi}(v_0, \mu) + \mathsf{N}_{\mu}(v_0) = \mathcal{Q}(v_0, \mu), \\ & Q(v_0, \mu) = \mathsf{\Pi}_p \left(\mathcal{R}(v_0 + \widetilde{\Psi}(v_0, \mu), \mu) - D_{v_0} \widetilde{\Psi}(v_0, \mu) \mathsf{N}_{\mu}(v_0) \right). \\ & \mathsf{\Pi}_p \text{ represents the linear map that associates to a map of class } \mathcal{C}^p \text{ the polynomial of degree } p \text{ in its Taylor expansion.} \end{split}$$

Projecting on \mathcal{E}_0 and \mathcal{Z}_h gives :

$$\mathcal{A}_{L_0} \widetilde{\Psi}_0(v_0, \mu) + \mathsf{N}_{\mu}(v_0) = Q_0(v_0, \mu)$$
$$D_{v_0} \widetilde{\Psi}_h(v_0, \mu) L_0 v_0 - \mathsf{L}_h \widetilde{\Psi}_h(v_0, \mu) = Q_h(v_0, \mu),$$

where

$$Q_0(v_0,\mu) = P_0 Q(v_0,\mu), \quad Q_h(v_0,\mu) = P_h Q.$$

Example: Hopf bifurcation

 $\sigma_0 = \{\pm i\omega\}, \ L_0\zeta = i\omega\zeta, \ \mu \in \mathbb{R}$

 $u = v_0 + \Psi_\mu(v_0), \ \Psi_\mu(v_0) \in \mathcal{Z}$

For $v_0(t) \in \mathcal{E}_0$, it is convenient to write

$$v_0(t) = A(t)\zeta + \overline{A(t)\zeta}, \quad A(t) \in \mathbb{C},$$

and since $\mathbf{N}_{\mu}(A, \overline{A}) = (AQ(|A|^2, \mu), \overline{AQ}(|A|^2, \mu))$, the reduced system reads

$$\frac{dA}{dt} = i\omega A + AQ(|A|^2, \mu) + \rho(A, \overline{A}, \mu)$$

Q complex-valued, polynomial in its first argument, with Q(0,0) = 0. We need to compute coefficients a and b in

$$Q(|A|^2, \mu) = a\mu + b|A|^2 + O((|\mu| + |A|^2)^2).$$

Example: Hopf bifurcation - continued 1

$$\Psi_{ql}(v_0^{(q)},\mu^{(l)})=\mu^l\sum_{q_1+q_2=q}A^{q_1}\overline{A}^{q_2}\Psi_{q_1q_2l},\quad \Psi_{q_1q_2l}\in\mathcal{Z}.$$

By identifying the terms of order $O(\mu)$, $O(A^2)$, and $O(A\overline{A})$, we obtain

$$\begin{aligned} -L\Psi_{001} &= R_{01}, \\ (2i\omega - L)\Psi_{200} &= R_{20}(\zeta, \zeta), \\ -L\Psi_{110} &= 2R_{20}(\zeta, \overline{\zeta}). \end{aligned}$$

Operators *L* and $(2i\omega - L)$ are invertible, so that Ψ_{001} , Ψ_{200} , and Ψ_{110} are uniquely determined . Next, identify the terms of order $O(\mu A)$ and $O(A^2\overline{A})$:

$$(i\omega - L)\Psi_{101} = -a\zeta + R_{11}(\zeta) + 2R_{20}(\zeta, \Psi_{001}), (i\omega - L)\Psi_{210} = -b\zeta + 2R_{20}(\zeta, \Psi_{110}) + 2R_{20}(\overline{\zeta}, \Psi_{200}) + 3R_{30}(\zeta, \zeta, \overline{\zeta}).$$

The range of $(i\omega - L)$ is of codimension 1, so we can solve these equations and determine Ψ_{101} and Ψ_{200} , provided the right hand sides satisfy one solvability condition.

The solvability condition is that the right hand sides be orthogonal to the kernel of the adjoint $(-i\omega - L^*)$ of $(i\omega - L)$. The kernel of $(-i\omega - L^*)$ is spanned by $\zeta^* \in \mathcal{X}^*$ that we choose such that $\langle \zeta, \zeta^* \rangle = 1$. Then

$$a = \langle R_{11}(\zeta) + 2R_{20}(\zeta, \Psi_{001}), \zeta^* \rangle, b = \langle 2R_{20}(\zeta, \Psi_{110}) + 2R_{20}(\overline{\zeta}, \Psi_{200}) + 3R_{30}(\zeta, \zeta, \overline{\zeta}), \zeta^* \rangle.$$

21 / 34

Example: Hopf bifurcation with O(2) symmetry

Assume that we have a group $\{\mathbf{R}_{\varphi}, \mathbf{S}; \varphi \in \mathbb{R}/2\pi\mathbb{Z}\}\$ representation of an O(2) symmetry in \mathcal{X} and \mathcal{Z} : we have \mathbf{S} , and \mathbf{R}_{φ} with $\mathbf{S}^2 = \mathbb{I}$, and

$$\begin{array}{rcl} \mathbf{R}_{\varphi}\mathbf{S} &=& \mathbf{S}\mathbf{R}_{-\varphi} \text{ for all } \varphi \in \mathbb{R}/2\pi\mathbb{Z} \\ \mathbf{R}_{\varphi} \circ \mathbf{R}_{\psi} &=& \mathbf{R}_{\varphi+\psi} \text{ for all } \varphi, \ \psi \in \mathbb{R}/2\pi\mathbb{Z} \\ \mathbf{R}_{0} &=& \mathbb{I} \end{array}$$

Assume that our system commutes with this representation of O(2):

$$\mathsf{SL} = \mathsf{LS}, \ \mathsf{R}(\mathsf{S}u,\mu) = \mathsf{SR}(u,\mu)$$
 for all $\mu \in \mathbb{R}$

and $\mathbf{R}_{\varphi}L = L\mathbf{R}_{\varphi}$, $R(\mathbf{R}_{\varphi}u, \mu) = \mathbf{R}_{\varphi}R(u, \mu)$ for all $\varphi \in \mathbb{R}/2\pi\mathbb{Z}$, $u \in \mathbb{Z}$, and $\mu \in \mathbb{R}$.

22 / 34

Assume that $\sigma_0 = \{\pm i\omega\}$, and eigenvectors are not invariant under the action of \mathbf{R}_{ω} .

Notice that any eigenvalue λ of L that has an eigenvector ζ not invariant under the action of \mathbf{R}_{φ} is at least geometrically double.

Generically, $\pm i\omega$ are algebraically and geometrically double eigenvalues. Then the restriction of the action of \mathbf{R}_{φ} to the eigenspaces associated with the eigenvalues $\pm i\omega$ is not trivial, and we can choose the eigenvectors $\{\zeta_0, \zeta_1\}$ associated with $i\omega$ such that

$$\mathbf{R}_{\varphi}\zeta_{0}=e^{im\varphi}\zeta_{0},\quad \mathbf{R}_{\varphi}\zeta_{1}=e^{-im\varphi}\zeta_{1},\quad \mathbf{S}\zeta_{0}=\zeta_{1},\quad \mathbf{S}\zeta_{1}=\zeta_{0}.$$

 $\{\overline{\zeta}_0,\overline{\zeta}_1\}$ are the eigenvectors associated with $-i\omega$.

Hopf bifurcation with O(2) symmetry - Normal form

$$\begin{array}{rcl} u &=& v_0 + \widetilde{\Psi}(v_0, \mu), \quad v_0 \in \mathcal{E}_0, \quad \widetilde{\Psi}(v_0, \mu) \in \mathcal{Z}, \\ v_0(t) &=& A(t)\zeta_0 + B(t)\zeta_1 + \overline{A(t)\zeta_0} + \overline{B(t)\zeta_1}. \end{array}$$

 $\widetilde{\Psi}(\cdot, \mu)$ commutes with \mathbf{R}_{φ} and \mathbf{S} . Define $\mathbf{N}_{\mu} = (\Phi_0, \Phi_1, \overline{\Phi}_0, \overline{\Phi}_1)$, where Φ_j , j = 0, 1, are polynomials of $(A, B, \overline{A}, \overline{B})$ with coefficients depending upon μ . Using successively the characterization theorem and the fact that \mathbf{N}_{μ} commutes with \mathbf{R}_{φ} and \mathbf{S} , we find that

$$\begin{array}{rcl} \Phi_{0}(e^{-i\omega t}A,e^{-i\omega t}B,e^{i\omega t}\overline{A},e^{i\omega t}\overline{B}) &=& e^{-i\omega t}\Phi_{0}(A,B,\overline{A},\overline{B}),\\ \Phi_{1}(e^{-i\omega t}A,e^{-i\omega t}B,e^{i\omega t}\overline{A},e^{i\omega t}\overline{B}) &=& e^{-i\omega t}\Phi_{1}(A,B,\overline{A},\overline{B}),\\ \Phi_{0}(e^{im\varphi}A,e^{-im\varphi}B,e^{-im\varphi}\overline{A},e^{im\varphi}\overline{B}) &=& e^{im\varphi}\Phi_{0}(A,B,\overline{A},\overline{B}),\\ \Phi_{1}(e^{im\varphi}A,e^{-im\varphi}B,e^{-im\varphi}\overline{A},e^{im\varphi}\overline{B}) &=& e^{-im\varphi}\Phi_{1}(A,B,\overline{A},\overline{B}),\\ \Phi_{0}(B,A,\overline{B},\overline{A}) &=& \Phi_{1}(A,B,\overline{A},\overline{B}) \end{array}$$

for all $t \in \mathbb{R}$ and $\varphi \in \mathbb{R}/2\pi\mathbb{Z}$.

Hopf bifurcation with O(2) symmetry - Normal formcontinued

$$\frac{dA}{dt} = i\omega A + A(a\mu + b|A|^2 + c|B|^2) + \rho(A, B, \overline{A}, \overline{B}, \mu)$$

$$\frac{dB}{dt} = i\omega B + B(a\mu + b|B|^2 + c|A|^2) + \rho(B, A, \overline{B}, \overline{A}, \mu),$$

with $\rho(A, B, \overline{A}, \overline{B}, \mu) = O((|A| + |B|)(|A|^2 + |B|^2 + |\mu|)^2).$

 $A = r_0 e^{i \theta_0}, \quad B = r_1 e^{i \theta_1},$ then for the truncated system

$$\frac{d\theta_0}{dt} = \omega + a_i\mu + b_ir_0^2 + c_ir_1^2,$$

$$\frac{d\theta_1}{dt} = \omega + a_i\mu + b_ir_1^2 + c_ir_0^2.$$

Hopf bifurcation with O(2) symmetry - Dynamics

phase portraits in the (r_0, r_1) plane, in the case $a_r \mu > 0$. For $b_r < 0$ two pairs of equilibria $(\pm r_*(\mu), 0)$ and $(0, \pm r_*(\mu))$ corresponding to *rotating waves*. For $b_r + c_r < 0$ pair of equilibria with $r_0 = r_1$, corresponding to *rotating standing waves*.

Couette - Taylor hydrodynamic problem

$$\frac{\partial V}{\partial t} + (V \cdot \nabla)V + \frac{1}{\rho}\nabla \rho = \nu \Delta V, \ \nabla \cdot V = 0, + \text{Boundary Cond.}$$

Couette flow In cylindrical coordinates (r, θ, z)

$$V^{(0)} = (0, v_0(r), 0), \quad p^{(0)} = \rho \int \frac{v_0^2}{r} dr$$
$$v_0(r) = \frac{\Omega_2 R_2^2 - \Omega_1 R_1^2}{R_2^2 - R_1^2} r + \frac{(\Omega_1 - \Omega_2) R_1^2 R_2^2}{R_2^2 - R_1^2} \frac{1}{r}.$$

G. looss (IUF, Univ. Nice)

Couette - Taylor problem (2)

We set
$$V = V^{(0)} + U$$
, $p = p^{(0)} + \rho q$,

$$\frac{\partial U}{\partial t} = \nu \Delta U - (V^{(0)} \cdot \nabla)U - (U \cdot \nabla)V^{(0)} - (U \cdot \nabla)U - \nabla q$$

$$\nabla \cdot U = 0, U|_{r=R_1,R_2} = 0$$

Periodicity condition in the axis direction:

 $U(x + he_z, t) = U(x, t), \nabla p(x, t) = \nabla p(x + he_z, t)$ completed by a zero flux condition through any section of the cylindrical domain.

$$\mathcal{X} = \left\{ U \in \left(L^2(\Sigma \times (\mathbb{R}/h\mathbb{Z})) \right)^3; \nabla \cdot U = 0, \ U \cdot n|_{\partial \Sigma \times \mathbb{R}} = 0, \ \int_{\Sigma} U \cdot n \, dS = 0 \right\}$$

$$\mathcal{Z} = \left\{ U \in \mathcal{X}; U \in \left(H^2(\Sigma imes (\mathbb{R}/h\mathbb{Z}))
ight)^3, U|_{\partial \Sigma imes \mathbb{R}} = 0
ight\}$$

The orthogonal complement of \mathcal{X} in $(L^2(\Sigma \times (\mathbb{R}/h\mathbb{Z})))^3$ is the space $\{\nabla\phi; \phi \in H^1(\Sigma \times (\mathbb{R}/h\mathbb{Z})) + z\mathbb{R}\}$, i.e., $\nabla\phi$ is a periodic function, while ϕ is not periodic .

G. looss (IUF, Univ. Nice)

Couette - Taylor problem (3)

$$\frac{dU}{dt} = \mathbf{L}U + \mathbf{R}(U), \text{ in } \mathcal{X} \text{ for } U(\cdot, t) \in \mathcal{Z}$$

$$\mathbf{L}U = \mathbf{\Pi}_0\left(\nu\Delta U - (V^{(0)}\cdot\nabla)U - (U\cdot\nabla)V^{(0)}\right), \ \mathbf{R}(U) = -\mathbf{\Pi}_0\left((U\cdot\nabla)U\right).$$

Representations of symmetries commuting with the system

$$\begin{array}{lll} (\boldsymbol{\tau}_{a}U)(r,\theta,z) &=& U(r,\theta,z+a), \ a \in \mathbb{R}/h\mathbb{Z}, \\ (\mathbf{S}U)(r,\theta,z) &=& (U_{r}(r,\theta,-z), U_{\theta}(r,\theta,-z), -U_{z}((r,\theta,-z)), \\ (\mathbf{R}_{\phi}U)(r,\theta,z) &=& U(r,\theta+\phi,z), \ \phi \in \mathbb{R}/2\pi\mathbb{Z}, \end{array}$$

satisfy (O(2) action)

$$au_a \mathbf{S} = \mathbf{S} \boldsymbol{\tau}_{-a}, \quad \boldsymbol{\tau}_h = \mathbb{I}, \quad \boldsymbol{\tau}_a \boldsymbol{\tau}_b = \boldsymbol{\tau}_{a+b}.$$

 \mathbf{R}_{ϕ} represents a SO(2) action, which commutes with the O(2) action

Couette - Taylor problem (4)

Three dimensionless parameters appear in the equations:

$$\Omega_r = \frac{\Omega_2}{\Omega_1}, \quad \eta = \frac{R_1}{R_2}, \quad \mathcal{R} = \frac{R_1 \Omega_1 (R_2 - R_1)}{\nu}$$

Fixing Ω_r and η , we take \mathcal{R} as bifurcation parameter, and denote **L** by $\mathbf{L}_{\mathcal{R}}$. For low values of \mathcal{R} , the spectrum of $\mathbf{L}_{\mathcal{R}}$ is strictly contained in the left half-complex plane, i.e., the Couette flow is stable.

Instabilities are obtained by increasing \mathcal{R} (for instance by increasing the rotation rate of the inner cylinder).

The Case $\Omega_r > 0$ or $\Omega_r < 0$ Close to 0

In this case it has been shown numerically that as \mathcal{R} increases, there is a critical value \mathcal{R}_c for which an eigenvalue of $L_{\mathcal{R}}$ crosses the imaginary axis, passing through 0 from the left to the right, and all other eigenvalues remain in the left half-complex plane.

0 is a double eigenvalue with complex conjugated eigenvectors

$$\zeta = e^{ik_c z} \widehat{U}(r), \ \overline{\zeta} = \mathbf{S}\zeta, \ oldsymbol{ au}_a \zeta = e^{ik_c a} \zeta \ ext{for all} \ a \in \mathbb{R}.$$

Couette - Taylor problem (5)

Two-dimensional center manifold: $U = A\zeta + \overline{A\zeta} + \Psi(A, \overline{A}, \mu)$ Reduced system in \mathbb{C} : $\frac{dA}{dt} = f(A, \overline{A}, \mu)$

Then $\frac{dA}{dt} = Ag(|A|^2, \mu) = \alpha \mu A + bA|A|^2 + h.o.t.$, coef α and $b \in \mathbb{R}$. $\alpha > 0$, b < 0 when $\Omega_r > 0$, and b changes sign for a small value $\Omega_r < 0$

 $\mu < 0$ $\mu > 0$ circle of stable equilibria U_0 U_0 and $\tau_{\pi/k_c}U_0 = U_{\pi}$ invariant under **S** implies horizontal cells.

(i) (ii) (iii) (iv) (i) Side view of Taylor vortex flow. (ii) Meridian view of Taylor cells. (iii) Helicoidal waves (traveling in both z and θ directions). (iv) Ribbons (standing in z direction, traveling in θ direction)

SOPHIA ANTIPOLIS

Couette - Taylor problem (7)

Case $\Omega_r < 0$, not too close to 0

Numerical results show that the Couette flow first becomes unstable at a critical value \mathcal{R}_c of \mathcal{R} , when a pair of complex conjugate eigenvalues of $\mathbf{L}_{\mathcal{R}}$ crosses the imaginary axis, from the left to the right, as \mathcal{R} is increased, and the rest of the spectrum stays in the left half-complex plane. These two eigenvalues are both double, as this case is generic for O(2) equivariant systems, with two eigenvectors of the form

$$\zeta_0 = e^{i(k_c z + m\theta)} \widehat{U}(r), \quad \zeta_1 = e^{i(-k_c z + m\theta)} \mathbf{S} \widehat{U}(r),$$

where $m \neq 0$ (non-axisymmetric eigenvectors).

Four-dimensional center manifold, and the reduced vector field commute with the actions of symmetries :

$$\begin{aligned} \boldsymbol{\tau}_{\boldsymbol{a}}\zeta_{0} &= e^{ik_{c}\boldsymbol{a}}\zeta_{0}, \quad \boldsymbol{\tau}_{\boldsymbol{a}}\zeta_{1} = e^{-ik_{c}\boldsymbol{a}}\zeta_{1}, \quad \mathbf{S}\zeta_{0} = \zeta_{1}, \quad \mathbf{S}\zeta_{1} = \zeta_{0}, \\ \mathbf{R}_{\phi}\zeta_{0} &= e^{im\phi}\zeta_{0}, \quad \mathbf{R}_{\phi}\zeta_{1} = e^{im\phi}\zeta_{1}. \end{aligned}$$

We are here in the presence of a Hopf bifurcation with O(2) symmetry with an additional SO(2) symmetry represented by \mathbf{R}_{ϕ} .

Couette - Taylor problem (8)

The dynamics are ruled by a system in \mathbb{C}^2 of the form

$$\begin{array}{rcl} \displaystyle \frac{dA}{dt} & = & AP(|A|^2,|B|^2,\mu) \\ \displaystyle \frac{dB}{dt} & = & BP(|B|^2,|A|^2,\mu), \end{array}$$

 $\mu = \mathcal{R} - \mathcal{R}_c$, and $P(|A|^2, |B|^2, \mu) = i\omega + a\mu + b|A|^2 + c|B|^2 + h.o.t.$ is a smooth function of its arguments, with no "remainder ρ ." Solutions corresponding to A = 0 or to B = 0 travel along and around the *z*-axis with constant velocities. These are *helicoidal waves*, also called *spirals*, and they are axially periodic just as the Taylor vortex flow. The bifurcating solutions obtained for |A| = |B| are *standing waves* located in fixed horizontal periodic cells, as they are for the Taylor vortex flow, but with a non-axisymmetric internal structure rotating around the axis with a constant velocity. These solutions are also called *ribbons*.