Instabilities and local bifurcations. Elements of theory

Gérard looss

IUF, Université de Nice, Laboratoire J.A.Dieudonné,

Parc Valrose, F-06108 Nice Cedex02
M.Haragus, G.looss. Local bifurcations, center manifolds, and normal forms in infinite dimensional systems (329p.). Springer UTX, 2011

Bifurcations in dimension 1

$$
\frac{d u}{d t}=f(u, \mu), f(0,0)=0, \frac{\partial f}{\partial u}(0,0)=0, \mu \text { parameter }
$$

Saddle - node bifurcation

Assume f is $\mathcal{C}^{k}, k \geq 2$, in a neighborhood of $(0,0)$, and

$$
\frac{\partial f}{\partial \mu}(0,0)=: a \neq 0, \quad \frac{\partial^{2} f}{\partial u^{2}}(0,0)=: 2 b \neq 0
$$

As $(u, \mu) \rightarrow(0,0), f$ has the expansion

$$
f(u, \mu)=a \mu+b u^{2}+o\left(|\mu|+u^{2}\right)
$$

$$
a>0, b>0 \quad a<0, b<0
$$

Dim 1 -

Assume f is $\mathcal{C}^{k}, k \geq 3$, in a neighborhood of $(0,0)$, and satisfies

$$
f(-u, \mu)=-f(u, \mu), \frac{\partial^{2} f}{\partial \mu \partial u}(0,0)=: a \neq 0, \frac{\partial^{3} f}{\partial u^{3}}(0,0)=: 6 b \neq 0 .
$$

Hence, as $(u, \mu) \rightarrow(0,0), f$ has the expansion $f(u, \mu)=a \mu u+b u^{3}+o\left[|u|\left(|\mu|+u^{2}\right)\right], u=0$ is an equilibrium for all μ.

$$
a>0, b<0 \quad a>0, b>0 \quad a<0, b<0 \quad a<0, b>0
$$

Dim 2 -

in \mathbb{R}^{2}

$$
\frac{d u}{d t}=\mathbf{F}(u, \mu), \quad \mathbf{F}(0,0)=0,
$$

\mathbf{F} is $\mathcal{C}^{k}, k \geq 3$, in a neighborhood of $(0,0)$.
Define $\mathbf{L}:=D_{u} \mathbf{F}(0,0)$. Assume \mathbf{L} has a pair of complex conjugated purely imaginary eigenvalues $\pm i \omega, \omega>0: \mathbf{L} \zeta=i \omega \zeta, \mathbf{L} \bar{\zeta}=-i \omega \bar{\zeta}$.
Normal form theorem (seen later): for any integer $p \leq k$, and any μ sufficiently small, there exists a polynomial $\boldsymbol{\Phi}_{\mu}$ of degree p in (A, \bar{A}), with complex coefficients functions of μ, taking values in \mathbb{R}^{2}, such that

$$
\begin{gathered}
\boldsymbol{\Phi}_{0}(0,0)=0, \quad \partial_{A} \boldsymbol{\Phi}_{0}(0,0)=0, \quad \partial_{\bar{A}} \boldsymbol{\Phi}_{0}(0,0)=0 \\
u=A \zeta+\overline{A \zeta}+\boldsymbol{\Phi}_{\mu}(A, \bar{A}), \quad A \in \mathbb{C}
\end{gathered}
$$

transforms the system into the differential equation

$$
\frac{d A}{d t}=i \omega A+A Q\left(|A|^{2}, \mu\right)+o\left(|A|^{p}\right), Q \text { polynomial in }|A|^{2}, Q(0,0) \underset{\text { 别 }}{0}
$$

Hopf bifurcation - continued

$$
\frac{d A}{d t}=i \omega A+A\left(a \mu+b|A|^{2}\right)+o\left(|A|\left(|\mu|+|A|^{2}\right)\right)
$$

Assume $a_{r} \neq 0$ and $b_{r} \neq 0$.
Truncated system: set $A=r e^{i \phi}$,

$$
\begin{aligned}
\frac{d r}{d t} & =r\left(a_{r} \mu+b_{r} r^{2}\right) \text { (pitchfork bifurcation for radial part) } \\
\frac{d \phi}{d t} & =\omega+a_{i} \mu+b_{i} r^{2}, \text { (frequency of bifurcated periodic solution) }
\end{aligned}
$$

$$
\text { case } a_{r}>0, b_{r}<0
$$

Hyperbolic situation in \mathbb{R}^{n}

$$
\frac{d u}{d t}=F(u), F(0)=0, \quad D F(0)=L
$$

left: spectrum of L, center: linear situation, right: nonlinear situation

Hyperbolic situation in \mathbb{R}^{n} continued

$$
\begin{aligned}
u=X+Y & , X=P_{+} u \in E_{+}, Y=P_{-} u \in E_{-} \\
\frac{d X}{d t} & =L_{+} X+P_{+} R(X+Y) \\
\frac{d Y}{d t} & =L_{-} Y+P_{-} R(X+Y)
\end{aligned}
$$

Unstable manifold \mathcal{M}_{+}: solve in $u(t), t \leq 0$, with $u(t) \rightarrow 0$ as $t \rightarrow-\infty$

$$
u(t)=e^{L_{+} t} X+\int_{0}^{t} e^{L_{+}(t-s)} P_{+} R(u(s)) d s+\int_{-\infty}^{t} e^{L_{-}(t-s)} P_{-} R(u(s)) d s
$$

Then, by implicit function theorem, $u(t)=\Phi_{+}(X, t)$, and $u(0)=\Phi_{+}(X, 0)=X+\Psi_{+}(X)$, with $\Psi_{+}(X) \in E_{-}$

Center manifold in \mathbb{R}^{n}

Pliss 1964, Kelley 1967, Lanford 1973, Henry 1981, Mielke 1988, Kirrmann 1991, Vanderbauwhede - looss 1992

$$
\frac{d u}{d t}=L u+R(u, \mu), \quad(u, \mu) \in \mathbb{R}^{n} \times \mathbb{R}^{m}, R(0,0)=0, \quad D_{u} R(0,0)=0
$$

spectrum of $L=\sigma=\sigma_{-} \cup \sigma_{0}$
Hypothesis: $\sigma_{0}=$ finite number of eigenvalues of finite mutiplicities $\sup _{\lambda \in \sigma_{-}} \lambda<-\gamma<0$ (gap assumption)
$\mathbb{R}^{n}=E_{0} \oplus E_{-}, u=X+Y, X=P_{0} u, Y=P_{-} u$

left: linear case for $\mu=0$, asymptotic solutions $\in E_{0}$, right: non linear case

Center Manifolds- idea of proof

Theorem:

$$
\begin{aligned}
& \mathcal{M}_{\mu}=\left\{u=u_{0}+\boldsymbol{\Psi}\left(u_{0}, \mu\right),\left(u_{0}, \mu\right) \in E_{0} \times \mathbb{R}^{m}\right\} \\
& \boldsymbol{\Psi} \in \mathcal{C}^{k}\left(\mathcal{O}_{0}, E_{-}\right), \mathcal{O}_{0} \text { neighb of } 0 \text { in } E_{0} \times \mathbb{R}^{m} \\
& \boldsymbol{\Psi}(0,0)=0, D_{u_{0}} \boldsymbol{\Psi}(0,0)=0
\end{aligned}
$$

\mathcal{M}_{μ} locally invariant and locally attracting.
Idea of proof: Even though $u(t)$ stays bounded for $t \in \mathbb{R}$, the first term and the integral below with L_{0} may grow polynomially in t as $t \rightarrow-\infty$.

$$
u(t)=e^{L_{0} t} X+\int_{0}^{t} e^{L_{0}(t-s)} P_{0} R(u(s)) d s+\int_{-\infty}^{t} e^{L_{-}(t-s)} P_{-} R(u(s)) d s
$$

Need of a (smooth) "cut-off" function on E_{0}, modifying and making the system linear for its part in E_{0}, outside a ball of small radius. This allows to work in a space of functions growing at infinity.
New complications due to the fact that we deal with such functions (which may grow at $-\infty$ with a small exponential).

Center Manifolds in infinite dimensions

$$
\begin{aligned}
\frac{d u}{d t} & =L u+R(u, \mu) \\
R(0,0) & =0, D_{u} R(0,0)=0
\end{aligned}
$$

L linear bounded $\mathcal{Z} \rightarrow \mathcal{X}$,
\mathcal{Z} cont. embedded in \mathcal{X} (both Hilbert spaces)
$R:\left(\mathcal{Z} \times \mathbb{R}^{m}\right) \rightarrow \mathcal{X}$ of class $\mathcal{C}^{k}, k \geq 2$ in a neighborhood of 0 Hypothesis:
(i) (gap assumption) spectrum σ of $L=\sigma_{0} \cup \sigma_{-}$,

For $\lambda \in \sigma_{0}, \operatorname{Re} \lambda=0$,
$\sup _{\lambda \in \sigma_{-}} \operatorname{Re} \lambda<-\gamma<0$;
(ii) $\sigma_{0}=$ finite number of eigenvalues of finite mutiplicities

Center Manifolds in infinite dimensions - continued

Hypothesis on the linearized system

$$
\left\|(i \omega \mathbb{I}-L)^{-1}\right\|_{\mathcal{L}(\mathcal{X})} \leq \frac{C}{|\omega|} \text { for } \omega \in \mathbb{R},|\omega| \text { large. }
$$

Then the following properties (iii) and (iv) are satisfied. Define:
$\mathcal{E}_{0}=P_{0} \mathcal{X}=P_{0} \mathcal{Z}, \mathcal{Z}_{h}=P_{h} \mathcal{Z}, \mathcal{X}=\mathcal{E}_{0} \oplus \mathcal{X}_{h}, \mathcal{Z}=\mathcal{E}_{0} \oplus \mathcal{Z}_{h}, \eta \in[0, \gamma]$
(iii) $\frac{d u_{h}}{d t}=L_{h} u_{h}+f, f \in C^{0}(\mathbb{R}, \mathcal{X})$, $\sup _{t \in \mathbb{R}} e^{\eta t}\|f(t)\|_{\mathcal{X}}<\infty$,

Then, there exists a unique $u_{h}=K_{h} f$, such that
$K_{h} f \in C^{0}(\mathbb{R}, \mathcal{Z}), \sup _{t \in \mathbb{R}} e^{\eta t}\left\|K_{h} f(t)\right\|_{\mathcal{Z}}<C(\eta) \sup _{t \in \mathbb{R}} e^{\eta t}\|f(t)\|_{\mathcal{X}}$,
$C(\eta)$ continuous on $[0, \gamma]$.
(iv) $\frac{d u_{h}}{d t}=L_{h} u_{h},\left.u\right|_{t=0} \in \mathcal{Z}_{h}$.

Then, there exists a unique $u_{h} \in C^{0}\left(\mathbb{R}^{+}, \mathcal{Z}_{h}\right),\left\|u_{h}\right\|_{\mathcal{Z}} \leq c_{\eta} e^{-\eta t}, t \geq 0$.

Reduced system for asymptotic dynamics and Symmetries

$$
\begin{aligned}
\frac{d u_{0}}{d t} & =L_{0} u_{0}+P_{0} R\left(u_{0}+\boldsymbol{\Psi}\left(u_{0}, \mu\right), \mu\right):=f\left(u_{0}, \mu\right) \\
f(0,0) & =0, D_{u_{0}} f(0,0)=L_{0}, \text { spectrum of } L_{0}: \sigma_{0}
\end{aligned}
$$

Frequent case: 0 is a solution of the system for any μ $R(0, \mu)=0$, hence $\boldsymbol{\Psi}(0, \mu)=0, f(0, \mu)=0$ and the linear operator $A_{\mu}:=D_{L_{0}} f(0, \mu)$ has the eigenvalues close to the imaginary axis of the linearized operator $L_{\mu}:=L+D_{u} R(0, \mu)$

Reduced system for asymptotic dynamics and Symmetries

$$
\begin{aligned}
\frac{d u_{0}}{d t} & =L_{0} u_{0}+P_{0} R\left(u_{0}+\boldsymbol{\Psi}\left(u_{0}, \mu\right), \mu\right):=f\left(u_{0}, \mu\right) \\
f(0,0) & =0, D_{u_{0}} f(0,0)=L_{0}, \text { spectrum of } L_{0}: \sigma_{0}
\end{aligned}
$$

Frequent case: 0 is a solution of the system for any μ
$R(0, \mu)=0$, hence $\boldsymbol{\Psi}(0, \mu)=0, f(0, \mu)=0$ and
the linear operator $A_{\mu}:=D_{L_{0}} f(0, \mu)$ has the eigenvalues close to the imaginary axis of the linearized operator $L_{\mu}:=L+D_{\mu} R(0, \mu)$
Presence of symmetry

$$
\begin{aligned}
T L u & =L T u, T R(u, \mu)=R(T u, \mu) \\
\left.T\right|_{\mathcal{E}_{0}} & :=T_{0} \text { is an isometry }
\end{aligned}
$$

Then

$$
\begin{aligned}
T \boldsymbol{\Psi}\left(u_{0}, \mu\right) & =\boldsymbol{\Psi}\left(T_{0} u_{0}, \mu\right), \text { for } u_{0} \in \mathcal{E}_{0} \\
T_{0} f\left(u_{0}, \mu\right) & =f\left(T_{0} u_{0}, \mu\right)
\end{aligned}
$$

Computation of center manifold and reduced system

NB. We compute Taylor expansions, in powers of $\left(u_{0}, \mu\right) \in \mathcal{E}_{0} \times \mathbb{R}^{m}$

$$
D_{u_{0}} \boldsymbol{\Psi}\left(u_{0}, \mu\right) \frac{d u_{0}}{d t}=\frac{d u_{h}}{d t}
$$

replace $\frac{d u_{0}}{d t}$ by $L_{0} u_{0}+P_{0} R\left(u_{0}+\boldsymbol{\Psi}\left(u_{0}, \mu\right), \mu\right)$, and replace $\frac{d u_{h}}{d t}$ by $L_{h} \boldsymbol{\Psi}\left(u_{0}, \mu\right)+P_{h} R\left(u_{0}+\boldsymbol{\Psi}\left(u_{0}, \mu\right), \mu\right)$ and identify powers of $\left(u_{0}, \mu\right)$.

Computation of center manifold and reduced system

NB. We compute Taylor expansions, in powers of $\left(u_{0}, \mu\right) \in \mathcal{E}_{0} \times \mathbb{R}^{m}$

$$
D_{u_{0}} \boldsymbol{\Psi}\left(u_{0}, \mu\right) \frac{d u_{0}}{d t}=\frac{d u_{h}}{d t}
$$

replace $\frac{d u_{0}}{d t}$ by $L_{0} u_{0}+P_{0} R\left(u_{0}+\boldsymbol{\Psi}\left(u_{0}, \mu\right), \mu\right)$,
and replace $\frac{d u_{h}}{d t}$ by $L_{h} \boldsymbol{\Psi}\left(u_{0}, \mu\right)+P_{h} R\left(u_{0}+\boldsymbol{\Psi}\left(u_{0}, \mu\right), \mu\right)$
and identify powers of $\left(u_{0}, \mu\right)$.
Example: quadratic order in u_{0} :
$f\left(u_{0}, \mu\right)=L_{0} u_{0}+P_{0} R_{2,0}\left(u_{0}\right)+P_{0} R_{0,1}(\mu)+$ h.o.t., h.o.t. depends on
$D_{u_{0}} \boldsymbol{\Psi}_{2,0}\left(u_{0}\right) L_{0} u_{0}-L_{h} \boldsymbol{\Psi}_{2,0}\left(u_{0}\right)=P_{h} R_{2,0}\left(u_{0}\right)$ leads to
$\boldsymbol{\Psi}_{2,0}\left(u_{0}\right)=\int_{0}^{\infty} e^{L_{h} t} P_{h} R_{2,0}\left(e^{-L_{0} t} u_{0}\right) d t$.
This may become tedious, and may lead to a complicate vector field in \mathcal{E}_{0}, in case of dimension >1, specially if orders >2 are required.
Our purpose now is to simplify the reduced system, in using Symmetries and Normal form theory.

Normal forms

Poincaré, Birkhoff, Arnold, Belitskii, Elphick et al...
$p \geq 2, \exists$ polynomial $\Phi_{\mu}: \mathcal{E}_{0} \rightarrow \mathcal{E}_{0}$, of degree p and a neighborhood \mathcal{O}_{0} of 0 in $\mathcal{E}_{0} \times \mathbb{R}^{m}$, such that the local change of variable in \mathcal{E}_{0}

$$
u_{0}=v_{0}+\Phi_{\mu}\left(v_{0}\right)
$$

transforms the reduced system into a new system where \mathbf{N}_{μ} is a polynomial of degree p such that

$$
\frac{d v_{0}}{d t}=L_{0} v_{0}+\mathbf{N}_{\mu}\left(v_{0}\right)+\rho\left(v_{0}, \mu\right)
$$

$$
\begin{aligned}
\mathbf{N}_{0}(0) & =0, \quad D_{v_{0}} \mathbf{N}_{0}(0)=0 \\
e^{L_{0}^{*} t} \mathbf{N}_{\mu}\left(v_{0}\right) & =\mathbf{N}_{\mu}\left(e_{0}^{L_{0}^{*} t} v_{0}\right), \forall\left(t, v_{0}\right) \in \mathbb{R} \times \mathcal{E}_{0} \\
\rho\left(v_{0}, \mu\right) & =o\left(\left\|v_{0}\right\|^{p}\right)
\end{aligned}
$$

NB. In case of analytical vector fields, there are results optimizing the degree p, giving a rest ρ exponentially small (G.I., E.Lombardi 2005)

Normal forms - continued

Equivalent characterization:

$$
D_{v_{0}} \mathbf{N}_{\mu}(v) L_{0}^{*} v=L_{0}^{*} \mathbf{N}_{\mu}(v) \text { for all } v \in \mathcal{E}_{0} \text { and } \mu \in \mathbb{R}^{m}
$$

Normal forms - continued

Equivalent characterization:

$$
D_{v_{0}} \mathbf{N}_{\mu}(v) L_{0}^{*} v=L_{0}^{*} \mathbf{N}_{\mu}(v) \text { for all } v \in \mathcal{E}_{0} \text { and } \mu \in \mathbb{R}^{m}
$$

Case of a linear operator $L+R_{\mu}, R_{0}=0$ interesting when L is not diagonalizable.
Then Φ_{μ} is linear (only degree 1 terms); the normal form $L+\mathbf{N}_{\mu}$ is also linear, and

$$
\mathbf{N}_{\mu} L^{*}=L^{*} \mathbf{N}_{\mu}
$$

Normal forms - continued

Equivalent characterization:

$$
D_{v_{0}} \mathbf{N}_{\mu}(v) L_{0}^{*} v=L_{0}^{*} \mathbf{N}_{\mu}(v) \text { for all } v \in \mathcal{E}_{0} \text { and } \mu \in \mathbb{R}^{m}
$$

Case of a linear operator $L+R_{\mu}, R_{0}=0$ interesting when L is not diagonalizable.
Then Φ_{μ} is linear (only degree 1 terms); the normal form $L+\mathbf{N}_{\mu}$ is also linear, and

$$
\mathbf{N}_{\mu} L^{*}=L^{*} \mathbf{N}_{\mu}
$$

Cases with Symmetries Assume that the nonlinear system is equivariant under an isometry T in \mathbb{R}^{n} Then, polynomials \mathbf{N}_{μ} and Φ_{μ} commute with T.

Normal forms - idea of proof

$d u / d t=L u+R(u), u \in \mathbb{R}^{n}, p$ is a given number ≥ 2. No μ here, for simplification.

$$
R(u)=\sum_{2 \leq q \leq p} R_{q}\left(u^{(q)}\right)+o\left(\|u\|^{p}\right)
$$

R_{q} is q-linear symmetric on $\left(\mathbb{R}^{n}\right)^{q}$. Analogous notation for Φ_{q} and \mathbf{N}_{q}. Differentiate $u=v+\Phi(v)$ with respect to t, and replace $d u / d t$ and $d v / d t$:

$$
(\mathbb{I}+D \Phi(v))(L v+\mathbf{N}(v)+\rho(v))=L(v+\Phi(v))+R(v+\Phi(v))
$$

Identify powers of v :

$$
\begin{aligned}
\mathcal{A}_{L} \Phi_{q} & =Q_{q}-\mathbf{N}_{q}, q=2,3, \ldots p ; Q_{2}=R_{2} \\
\mathcal{A}_{L} \Phi(v): & =D \Phi(v) L v-L \Phi(v) \text { for all } v \in \mathbb{R}^{n} .
\end{aligned}
$$

$Q_{q}-\mathbf{N}_{q} \in \operatorname{ker}\left(\mathcal{A}_{L^{*}}\right)^{\perp}$, i.e. we can choose $\mathbf{N}_{q}=P_{\operatorname{ker}\left(\mathcal{A}_{L^{*}}\right)} Q_{q}$, and $\Phi_{q} \in \operatorname{ker}\left(\mathcal{A}_{L}\right)^{\perp}$ (makes the solution uniquely determined).

Computation of Center Manifold and Normal form

Center manifold theorem gives

$$
u=u_{0}+\boldsymbol{\Psi}\left(u_{0}, \mu\right), u_{0} \in \mathcal{E}_{0} \text { and } \boldsymbol{\Psi}\left(u_{0}, \mu\right) \in \mathcal{Z}_{h}
$$

Normal form applied to the reduced system for $u_{0} \in \mathcal{E}_{0}$:

$$
u_{0}=v_{0}+\boldsymbol{\Phi}_{\mu}\left(v_{0}\right), \frac{d v_{0}}{d t}=L_{0} v_{0}+\mathbf{N}_{\mu}\left(v_{0}\right)+\boldsymbol{\rho}\left(v_{0}, \mu\right)
$$

Consequently, we can write

$$
u=v_{0}+\widetilde{\boldsymbol{\Psi}}\left(v_{0}, \mu\right)
$$

with

$$
\widetilde{\boldsymbol{\Psi}}\left(v_{0}, \mu\right)=\boldsymbol{\Phi}_{\mu}\left(v_{0}\right)+\boldsymbol{\Psi}\left(v_{0}+\boldsymbol{\Phi}_{\mu}\left(v_{0}\right), \mu\right) \in \mathcal{Z}
$$

$\widetilde{\boldsymbol{\Psi}}\left(v_{0}, \mu\right)$ belongs to the entire space \mathcal{Z}, and not to \mathcal{Z}_{h}.

Computation of Center Manifold and Normal form continued

Differentiating with respect to t and replacing $d u / d t$ and $d v_{0} / d t$, leads to
$D_{v_{0}} \widetilde{\boldsymbol{\Psi}}\left(v_{0}, \mu\right) L_{0} v_{0}-L \widetilde{\boldsymbol{\Psi}}\left(v_{0}, \mu\right)+\mathbf{N}_{\mu}\left(v_{0}\right)=Q\left(v_{0}, \mu\right)$,
$Q\left(v_{0}, \mu\right)=\boldsymbol{\Pi}_{p}\left(R\left(v_{0}+\widetilde{\boldsymbol{\Psi}}\left(v_{0}, \mu\right), \mu\right)-D_{v_{0}} \widetilde{\boldsymbol{\Psi}}\left(v_{0}, \mu\right) \mathbf{N}_{\mu}\left(v_{0}\right)\right)$.
$\boldsymbol{\Pi}_{p}$ represents the linear map that associates to a map of class \mathcal{C}^{p} the polynomial of degree p in its Taylor expansion.

Projecting on \mathcal{E}_{0} and \mathcal{Z}_{h} gives :

$$
\begin{aligned}
\mathcal{A}_{L_{0}} \widetilde{\boldsymbol{\Psi}}_{0}\left(v_{0}, \mu\right)+\mathbf{N}_{\mu}\left(v_{0}\right) & =Q_{0}\left(v_{0}, \mu\right) \\
D_{v_{0}} \widetilde{\Psi}_{h}\left(v_{0}, \mu\right) L_{0} v_{0}-\mathbf{L}_{h} \widetilde{\boldsymbol{\Psi}}_{h}\left(v_{0}, \mu\right) & =Q_{h}\left(v_{0}, \mu\right)
\end{aligned}
$$

where

$$
Q_{0}\left(v_{0}, \mu\right)=P_{0} Q\left(v_{0}, \mu\right), \quad Q_{h}\left(v_{0}, \mu\right)=P_{h} Q .
$$

Example: Hopf bifurcation

$$
\begin{aligned}
& \sigma_{0}=\{ \pm i \omega\}, L_{0} \zeta=i \omega \zeta, \mu \in \mathbb{R} \\
& \qquad u=v_{0}+\boldsymbol{\Psi}_{\mu}\left(v_{0}\right), \boldsymbol{\Psi}_{\mu}\left(v_{0}\right) \in \mathcal{Z}
\end{aligned}
$$

For $v_{0}(t) \in \mathcal{E}_{0}$, it is convenient to write

$$
v_{0}(t)=A(t) \zeta+\overline{A(t) \zeta}, \quad A(t) \in \mathbb{C}
$$

and since $\mathbf{N}_{\mu}(A, \bar{A})=\left(A Q\left(|A|^{2}, \mu\right), \overline{A Q}\left(|A|^{2}, \mu\right)\right)$, the reduced system reads

$$
\frac{d A}{d t}=i \omega A+A Q\left(|A|^{2}, \mu\right)+\rho(A, \bar{A}, \mu)
$$

Q complex-valued, polynomial in its first argument, with $Q(0,0)=0$. We need to compute coefficients a and b in

$$
Q\left(|A|^{2}, \mu\right)=a \mu+b|A|^{2}+O\left(\left(|\mu|+|A|^{2}\right)^{2}\right) .
$$

Example: Hopf bifurcation - continued 1

$$
\boldsymbol{\Psi}_{q /}\left(v_{0}^{(q)}, \mu^{(/)}\right)=\mu^{\prime} \sum_{q_{1}+q_{2}=q} A^{q_{1}} \bar{A}^{q_{2}} \boldsymbol{\Psi}_{q_{1} q_{2} /}, \quad \boldsymbol{\Psi}_{q_{1} q_{2} /} \in \mathcal{Z}
$$

By identifying the terms of order $O(\mu), O\left(A^{2}\right)$, and $O(A \bar{A})$, we obtain

$$
\begin{aligned}
-L \boldsymbol{\Psi}_{001} & =R_{01} \\
(2 i \omega-L) \boldsymbol{\Psi}_{200} & =R_{20}(\zeta, \zeta) \\
-L \boldsymbol{\Psi}_{110} & =2 R_{20}(\zeta, \bar{\zeta})
\end{aligned}
$$

Operators L and $(2 i \omega-L)$ are invertible, so that $\boldsymbol{\Psi}_{001}, \boldsymbol{\Psi}_{200}$, and $\boldsymbol{\Psi}_{110}$ are uniquely determined. Next, identify the terms of order $O(\mu A)$ and $O\left(A^{2} \bar{A}\right)$:

$$
\begin{aligned}
& (i \omega-L) \boldsymbol{\Psi}_{101}=-a \zeta+R_{11}(\zeta)+2 R_{20}\left(\zeta, \boldsymbol{\Psi}_{001}\right) \\
& (i \omega-L) \boldsymbol{\Psi}_{210}=-b \zeta+2 R_{20}\left(\zeta, \boldsymbol{\Psi}_{110}\right)+2 R_{20}\left(\bar{\zeta}, \boldsymbol{\Psi}_{200}\right)+3 R_{30}(\zeta
\end{aligned}
$$

Example: Hopf bifurcation - continued 2

The range of $(i \omega-L)$ is of codimension 1 , so we can solve these equations and determine $\boldsymbol{\Psi}_{101}$ and $\boldsymbol{\Psi}_{200}$, provided the right hand sides satisfy one solvability condition.
The solvability condition is that the right hand sides be orthogonal to the kernel of the adjoint $\left(-i \omega-L^{*}\right)$ of $(i \omega-L)$. The kernel of $\left(-i \omega-L^{*}\right)$ is spanned by $\zeta^{*} \in \mathcal{X}^{*}$ that we choose such that $\left\langle\zeta, \zeta^{*}\right\rangle=1$. Then

$$
\begin{aligned}
a & =\left\langle R_{11}(\zeta)+2 R_{20}\left(\zeta, \boldsymbol{\Psi}_{001}\right), \zeta^{*}\right\rangle \\
b & =\left\langle 2 R_{20}\left(\zeta, \boldsymbol{\Psi}_{110}\right)+2 R_{20}\left(\bar{\zeta}, \boldsymbol{\Psi}_{200}\right)+3 R_{30}(\zeta, \zeta, \bar{\zeta}), \zeta^{*}\right\rangle
\end{aligned}
$$

Example: Hopf bifurcation with $O(2)$ symmetry

Assume that we have a group $\left\{\mathbf{R}_{\varphi}, \mathbf{S} ; \varphi \in \mathbb{R} / 2 \pi \mathbb{Z}\right\}$ representation of an $O(2)$ symmetry in \mathcal{X} and \mathcal{Z} : we have \mathbf{S}, and \mathbf{R}_{φ} with $\mathbf{S}^{2}=\mathbb{I}$, and

$$
\begin{aligned}
\mathbf{R}_{\varphi} \mathbf{S} & =\mathbf{S R}_{-\varphi} \text { for all } \varphi \in \mathbb{R} / 2 \pi \mathbb{Z} \\
\mathbf{R}_{\varphi} \circ \mathbf{R}_{\psi} & =\mathbf{R}_{\varphi+\psi} \text { for all } \varphi, \psi \in \mathbb{R} / 2 \pi \mathbb{Z} \\
\mathbf{R}_{0} & =\mathbb{I}
\end{aligned}
$$

Assume that our system commutes with this representation of $O(2)$:

$$
\mathbf{S} L=L \mathbf{S}, \quad R(\mathbf{S} u, \mu)=\mathbf{S} R(u, \mu) \text { for all } \mu \in \mathbb{R}
$$

and $\mathbf{R}_{\varphi} L=L \mathbf{R}_{\varphi}, R\left(\mathbf{R}_{\varphi} u, \mu\right)=\mathbf{R}_{\varphi} R(u, \mu)$ for all $\varphi \in \mathbb{R} / 2 \pi \mathbb{Z}, u \in \mathcal{Z}$, and $\mu \in \mathbb{R}$.

Hopf bifurcation with $O(2)$ symmetry - continued 1

Assume that $\sigma_{0}=\{ \pm i \omega\}$, and eigenvectors are not invariant under the action of \mathbf{R}_{φ}.
Notice that any eigenvalue λ of L that has an eigenvector ζ not invariant under the action of \mathbf{R}_{φ} is at least geometrically double.
Generically, $\pm i \omega$ are algebraically and geometrically double eigenvalues. Then the restriction of the action of \mathbf{R}_{φ} to the eigenspaces associated with the eigenvalues $\pm i \omega$ is not trivial, and we can choose the eigenvectors $\left\{\zeta_{0}, \zeta_{1}\right\}$ associated with $i \omega$ such that

$$
\mathbf{R}_{\varphi} \zeta_{0}=e^{i m \varphi} \zeta_{0}, \quad \mathbf{R}_{\varphi} \zeta_{1}=e^{-i m \varphi} \zeta_{1}, \quad \mathbf{S} \zeta_{0}=\zeta_{1}, \quad \mathbf{S} \zeta_{1}=\zeta_{0}
$$

$\left\{\bar{\zeta}_{0}, \bar{\zeta}_{1}\right\}$ are the eigenvectors associated with $-i \omega$.

Hopf bifurcation with $O(2)$ symmetry - Normal form

$$
\begin{aligned}
u & =v_{0}+\widetilde{\boldsymbol{\Psi}}\left(v_{0}, \mu\right), \quad v_{0} \in \mathcal{E}_{0}, \quad \widetilde{\boldsymbol{\Psi}}\left(v_{0}, \mu\right) \in \mathcal{Z}, \\
v_{0}(t) & =A(t) \zeta_{0}+B(t) \zeta_{1}+{\overline{A(t) \zeta_{0}}}_{0}+{\overline{B(t) \zeta_{1}}}_{1} .
\end{aligned}
$$

$\widetilde{\boldsymbol{\Psi}}(\cdot, \mu)$ commutes with \mathbf{R}_{φ} and \mathbf{S}. Define $\mathbf{N}_{\mu}=\left(\Phi_{0}, \Phi_{1}, \bar{\Phi}_{0}, \bar{\Phi}_{1}\right)$, where $\Phi_{j}, j=0,1$, are polynomials of (A, B, \bar{A}, \bar{B}) with coefficients depending upon μ. Using successively the characterization theorem and the fact that \mathbf{N}_{μ} commutes with \mathbf{R}_{φ} and \mathbf{S}, we find that

$$
\begin{aligned}
\Phi_{0}\left(e^{-i \omega t} A, e^{-i \omega t} B, e^{i \omega t} \bar{A}, e^{i \omega t} \bar{B}\right) & =e^{-i \omega t} \Phi_{0}(A, B, \bar{A}, \bar{B}), \\
\Phi_{1}\left(e^{-i \omega t} A, e^{-i \omega t} B, e^{i \omega t} \bar{A}, e^{i \omega t} \bar{B}\right) & =e^{-i \omega t} \Phi_{1}(A, B, \bar{A}, \bar{B}), \\
\Phi_{0}\left(e^{i m \varphi} A, e^{-i m \varphi} B, e^{-i m \varphi} \bar{A}, e^{i m \varphi} \bar{B}\right) & =e^{i m \varphi} \Phi_{0}(A, B, \bar{A}, \bar{B}), \\
\Phi_{1}\left(e^{i m \varphi} A, e^{-i m \varphi} B, e^{-i m \varphi} \bar{A}, e^{i m \varphi} \bar{B}\right) & =e^{-i m \varphi} \Phi_{1}(A, B, \bar{A}, \bar{B}), \\
\Phi_{0}(B, A, \bar{B}, \bar{A}) & =\Phi_{1}(A, B, \bar{A}, \bar{B})
\end{aligned}
$$

for all $t \in \mathbb{R}$ and $\varphi \in \mathbb{R} / 2 \pi \mathbb{Z}$.

Hopf bifurcation with $O(2)$ symmetry - Normal formcontinued

$$
\begin{aligned}
\frac{d A}{d t} & =i \omega A+A\left(a \mu+b|A|^{2}+c|B|^{2}\right)+\rho(A, B, \bar{A}, \bar{B}, \mu) \\
\frac{d B}{d t} & =i \omega B+B\left(a \mu+b|B|^{2}+c|A|^{2}\right)+\rho(B, A, \bar{B}, \bar{A}, \mu)
\end{aligned}
$$

with $\rho(A, B, \bar{A}, \bar{B}, \mu)=O\left((|A|+|B|)\left(|A|^{2}+|B|^{2}+|\mu|\right)^{2}\right)$.

$$
\begin{aligned}
A=r_{0} e^{i \theta_{0}}, \quad B & =r_{1} e^{i \theta_{1}}, \text { then for the truncated system } \\
\frac{d \theta_{0}}{d t} & =\omega+a_{i} \mu+b_{i} r_{0}^{2}+c_{i} r_{1}^{2} \\
\frac{d \theta_{1}}{d t} & =\omega+a_{i} \mu+b_{i} r_{1}^{2}+c_{i} r_{0}^{2}
\end{aligned}
$$

Hopf bifurcation with $O(2)$ symmetry－Dynamics

$$
\begin{aligned}
& \frac{d r_{0}}{d t}=r_{0}\left(a_{r} \mu+b_{r} r_{0}^{2}+c_{r} r_{1}^{2}\right) \\
& \frac{d r_{1}}{d t}=r_{1}\left(a_{r} \mu+b_{r} r_{1}^{2}+c_{r} r_{0}^{2}\right)
\end{aligned}
$$

phase portraits in the $\left(r_{0}, r_{1}\right)$ plane，in the case $a_{r} \mu>0$ ．For $b_{r}<0$ two pairs of equilibria $\left(\pm r_{*}(\mu), 0\right)$ and $\left(0, \pm r_{*}(\mu)\right)$ corresponding to rotating waves．For $b_{r}+c_{r}<0$ pair of equilibria with $r_{0}=r_{1}$ ，corresponding t⿴囗十心． standing waves．

G．Iooss（IUF，Univ．Nice）

Couette - Taylor hydrodynamic problem

$$
\frac{\partial V}{\partial t}+(V \cdot \nabla) V+\frac{1}{\rho} \nabla p=\nu \Delta V, \nabla \cdot V=0,+ \text { Boundary Cond. }
$$

Couette flow In cylindrical coordinates (r, θ, z)

$$
\begin{gathered}
V^{(0)}=\left(0, v_{0}(r), 0\right), \quad p^{(0)}=\rho \int \frac{v_{0}^{2}}{r} d r \\
v_{0}(r)=\frac{\Omega_{2} R_{2}^{2}-\Omega_{1} R_{1}^{2}}{R_{2}^{2}-R_{1}^{2}} r+\frac{\left(\Omega_{1}-\Omega_{2}\right) R_{1}^{2} R_{2}^{2}}{R_{2}^{2}-R_{1}^{2}} \frac{1}{r} .
\end{gathered}
$$

Couette - Taylor problem (2)

We set $V=V^{(0)}+U, p=p^{(0)}+\rho q$,

$$
\begin{aligned}
\frac{\partial U}{\partial t} & =\nu \Delta U-\left(V^{(0)} \cdot \nabla\right) U-(U \cdot \nabla) V^{(0)}-(U \cdot \nabla) U-\nabla q \\
\nabla \cdot U & =0,\left.U\right|_{r=R_{1}, R_{2}}=0
\end{aligned}
$$

Periodicity condition in the axis direction:
$U\left(x+h e_{z}, t\right)=U(x, t), \nabla p(x, t)=\nabla p\left(x+h e_{z}, t\right)$ completed by a zero flux condition through any section of the cylindrical domain.

$$
\begin{gathered}
\mathcal{X}=\left\{U \in\left(L^{2}(\Sigma \times(\mathbb{R} / h \mathbb{Z}))\right)^{3} ; \nabla \cdot U=0,\left.U \cdot n\right|_{\partial \Sigma \times \mathbb{R}}=0, \int_{\Sigma} U \cdot n d S=0\right. \\
\mathcal{Z}=\left\{U \in \mathcal{X} ; U \in\left(H^{2}(\Sigma \times(\mathbb{R} / h \mathbb{Z}))\right)^{3},\left.U\right|_{\partial \Sigma \times \mathbb{R}}=0\right\}
\end{gathered}
$$

The orthogonal complement of \mathcal{X} in $\left(L^{2}(\Sigma \times(\mathbb{R} / h \mathbb{Z}))\right)^{3}$ is the space $\left\{\nabla \phi ; \phi \in H^{1}(\Sigma \times(\mathbb{R} / h \mathbb{Z}))+z \mathbb{R}\right\}$, i.e., $\nabla \phi$ is a periodic function, while ϕ is not periodic.

Couette - Taylor problem (3)

$$
\frac{d U}{d t}=\mathbf{L} U+\mathbf{R}(U), \text { in } \mathcal{X} \text { for } U(\cdot, t) \in \mathcal{Z}
$$

$\mathbf{L} U=\boldsymbol{\Pi}_{0}\left(\nu \Delta U-\left(V^{(0)} \cdot \nabla\right) U-(U \cdot \nabla) V^{(0)}\right), \mathbf{R}(U)=-\boldsymbol{\Pi}_{0}((U \cdot \nabla) U)$.
Representations of symmetries commuting with the system

$$
\begin{aligned}
\left(\boldsymbol{\tau}_{a} U\right)(r, \theta, z) & =U(r, \theta, z+a), a \in \mathbb{R} / h \mathbb{Z}, \\
(\mathbf{S} U)(r, \theta, z) & =\left(U_{r}(r, \theta,-z), U_{\theta}(r, \theta,-z),-U_{z}((r, \theta,-z)),\right. \\
\left(\mathbf{R}_{\phi} U\right)(r, \theta, z) & =U(r, \theta+\phi, z), \phi \in \mathbb{R} / 2 \pi \mathbb{Z},
\end{aligned}
$$

satisfy $(O(2)$ action $)$

$$
\boldsymbol{\tau}_{a} \mathbf{S}=\mathbf{S} \boldsymbol{\tau}_{-a}, \quad \boldsymbol{\tau}_{h}=\mathbb{I}, \quad \boldsymbol{\tau}_{a} \boldsymbol{\tau}_{b}=\boldsymbol{\tau}_{a+b}
$$

\mathbf{R}_{ϕ} represents a $S O(2)$ action, which commutes with the $O(2)$ action. ${ }^{\text {nid }}$

Couette - Taylor problem (4)

Three dimensionless parameters appear in the equations:

$$
\Omega_{r}=\frac{\Omega_{2}}{\Omega_{1}}, \quad \eta=\frac{R_{1}}{R_{2}}, \quad \mathcal{R}=\frac{R_{1} \Omega_{1}\left(R_{2}-R_{1}\right)}{\nu}
$$

Fixing Ω_{r} and η, we take \mathcal{R} as bifurcation parameter, and denote \mathbf{L} by $\mathbf{L}_{\mathcal{R}}$. For low values of \mathcal{R}, the spectrum of $\mathbf{L}_{\mathcal{R}}$ is strictly contained in the left half-complex plane, i.e., the Couette flow is stable.
Instabilities are obtained by increasing \mathcal{R} (for instance by increasing the rotation rate of the inner cylinder).
The Case $\Omega_{r}>0$ or $\Omega_{r}<0$ Close to 0
In this case it has been shown numerically that as \mathcal{R} increases, there is a critical value \mathcal{R}_{c} for which an eigenvalue of $\mathbf{L}_{\mathcal{R}}$ crosses the imaginary axis, passing through 0 from the left to the right, and all other eigenvalues remain in the left half-complex plane.
0 is a double eigenvalue with complex conjugated eigenvectors

$$
\zeta=e^{i k_{c} z} \widehat{U}(r), \bar{\zeta}=\mathbf{S} \zeta, \tau_{a} \zeta=e^{i k_{c} a} \zeta \text { for all } a \in \mathbb{R}
$$

Couette - Taylor problem (5)

Two-dimensional center manifold: $U=A \zeta+\overline{A \zeta}+\boldsymbol{\Psi}(A, \bar{A}, \mu)$ Reduced system in $\mathbb{C}: \frac{d A}{d t}=f(A, \bar{A}, \mu)$

Symmetries: $\quad f(\bar{A}, A, \mu)=\overline{f(A, \bar{A}, \mu)}$

$$
f\left(e^{i k_{c} a} A, e^{-i k_{c} a} \bar{A}, \mu\right)=e^{i k_{c} a} f(A, \bar{A}, \mu), \text { for any } a \in \mathbb{R}
$$

Then $\frac{d A}{d t}=A g\left(|A|^{2}, \mu\right)=\alpha \mu A+b A|A|^{2}+$ h.o.t., coef α and $b \in \mathbb{R}$. $\alpha>0, b<0$ when $\Omega_{r}>0$, and b changes sign for a small value $\Omega_{r}<0$
$\mu<0 \quad \mu>0$ circle of stable equilibria
U_{0} and $\tau_{\pi / k_{c}} U_{0}=U_{\pi}$ invariant under \mathbf{S} implies horizontal cells.

$$
\mu<0
$$

Couette - Taylor problem (6)

(i)
(ii)
(iii)
(iv)
(i) Side view of Taylor vortex flow. (ii) Meridian view of Taylor cells.
(iii) Helicoidal waves (traveling in both z and θ directions).
(iv) Ribbons (standing in z direction, traveling in θ direction)
G. Iooss (IUF, Univ. Nice)

Couette - Taylor problem (7)

Case $\Omega_{r}<0$, not too close to 0
Numerical results show that the Couette flow first becomes unstable at a critical value \mathcal{R}_{c} of \mathcal{R}, when a pair of complex conjugate eigenvalues of $\mathbf{L}_{\mathcal{R}}$ crosses the imaginary axis, from the left to the right, as \mathcal{R} is increased, and the rest of the spectrum stays in the left half-complex plane. These two eigenvalues are both double, as this case is generic for $O(2)$ equivariant systems, with two eigenvectors of the form

$$
\zeta_{0}=e^{i\left(k_{c} z+m \theta\right)} \widehat{U}(r), \quad \zeta_{1}=e^{i\left(-k_{c} z+m \theta\right)} \widehat{U}(r)
$$

where $m \neq 0$ (non-axisymmetric eigenvectors).
Four-dimensional center manifold, and the reduced vector field commute with the actions of symmetries :

$$
\begin{gathered}
\boldsymbol{\tau}_{a} \zeta_{0}=e^{i k_{c} a} \zeta_{0}, \quad \boldsymbol{\tau}_{a} \zeta_{1}=e^{-i k_{c} a} \zeta_{1}, \quad \mathbf{S} \zeta_{0}=\zeta_{1}, \quad \mathbf{S} \zeta_{1}=\zeta_{0} \\
\mathbf{R}_{\phi} \zeta_{0}=e^{i m \phi} \zeta_{0}, \quad \mathbf{R}_{\phi} \zeta_{1}=e^{i m \phi} \zeta_{1}
\end{gathered}
$$

We are here in the presence of a Hopf bifurcation with $O(2)$ symmetry with an additional $S O(2)$ symmetry represented by \mathbf{R}_{ϕ}.

Couette - Taylor problem (8)

The dynamics are ruled by a system in \mathbb{C}^{2} of the form

$$
\begin{aligned}
\frac{d A}{d t} & =A P\left(|A|^{2},|B|^{2}, \mu\right) \\
\frac{d B}{d t} & =B P\left(|B|^{2},|A|^{2}, \mu\right)
\end{aligned}
$$

$\mu=\mathcal{R}-\mathcal{R}_{c}$, and $P\left(|A|^{2},|B|^{2}, \mu\right)=i \omega+a \mu+b|A|^{2}+c|B|^{2}+$ h.o.t.
is a smooth function of its arguments, with no "remainder ρ."
Solutions corresponding to $A=0$ or to $B=0$ travel along and around the z-axis with constant velocities. These are helicoidal waves, also called spirals, and they are axially periodic just as the Taylor vortex flow. The bifurcating solutions obtained for $|A|=|B|$ are standing waves located in fixed horizontal periodic cells, as they are for the Taylor vortex flow, but with a non-axisymmetric internal structure rotating around the axis with a constant velocity. These solutions are also called ribbons.

