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Bifurcations in dimension 1

du

dt
= f (u, µ), f (0, 0) = 0,

∂f

∂u
(0, 0) = 0, µ parameter

Saddle - node bifurcation
Assume f is Ck , k ≥ 2, in a neighborhood of (0, 0), and

∂f

∂µ
(0, 0) =: a 6= 0,

∂2f

∂u2
(0, 0) =: 2b 6= 0.

As (u, µ) → (0, 0), f has the expansion

f (u, µ) = aµ+ bu2 + o(|µ| + u2)

µ µ µ µ

u u u u

0 0 0 0

a > 0, b < 0 a > 0, b > 0 a < 0, b < 0 a < 0, b > 0
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Dim 1 - Pitchfork bifurcation

Assume f is Ck , k ≥ 3, in a neighborhood of (0, 0), and satisfies

f (−u, µ) = −f (u, µ),
∂2f

∂µ∂u
(0, 0) =: a 6= 0,

∂3f

∂u3
(0, 0) =: 6b 6= 0.

Hence, as (u, µ) → (0, 0), f has the expansion
f (u, µ) = aµu + bu3 + o[|u|(|µ| + u2)], u = 0 is an equilibrium for all µ.

µ µ µ µ

u u u u

0 0 0 0

a > 0, b < 0 a > 0, b > 0 a < 0, b < 0 a < 0, b > 0
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Dim 2 - Hopf bifurcation in R2

du

dt
= F(u, µ), F(0, 0) = 0,

F is Ck , k ≥ 3, in a neighborhood of (0, 0).
Define L := DuF(0, 0). Assume L has a pair of complex conjugated purely
imaginary eigenvalues ±iω, ω > 0: Lζ = iωζ, Lζ = −iωζ.
Normal form theorem (seen later): for any integer p ≤ k, and any µ
sufficiently small, there exists a polynomial Φµ of degree p in (A,A), with
complex coefficients functions of µ, taking values in R

2, such that

Φ0(0, 0) = 0, ∂AΦ0(0, 0) = 0, ∂
A
Φ0(0, 0) = 0,

u = Aζ + Aζ + Φµ(A,A), A ∈ C,

transforms the system into the differential equation

dA

dt
= iωA + AQ(|A|2, µ) + o(|A|p), Q polynomial in |A|2,Q(0, 0) = 0
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Hopf bifurcation - continued

dA

dt
= iωA + A(aµ+ b|A|2) + o(|A|(|µ| + |A|2)),

Assume ar 6= 0 and br 6= 0.
Truncated system: set A = re iφ,

dr

dt
= r(arµ+ br r

2) (pitchfork bifurcation for radial part)

dφ

dt
= ω + aiµ+ bi r

2, (frequency of bifurcated periodic solution)

µ0

A A A

case ar > 0, br < 0
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Hyperbolic situation in Rn

du

dt
= F (u), F (0) = 0, DF (0) = L

++
+

-

-

M

M

O

0

σ+
σ−

C

left: spectrum of L, center: linear situation, right: nonlinear situation
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Hyperbolic situation in Rn continued

u = X + Y , X = P+u ∈ E+,Y = P−u ∈ E−

dX

dt
= L+X + P+R(X + Y )

dY

dt
= L−Y + P−R(X + Y )

Unstable manifold M+: solve in u(t), t ≤ 0, with u(t) → 0 as t → −∞

u(t) = eL+tX +

∫ t

0
eL+(t−s)P+R(u(s))ds +

∫ t

−∞

eL−(t−s)P−R(u(s))ds

Then, by implicit function theorem, u(t) = Φ+(X , t),
and u(0) = Φ+(X , 0) = X + Ψ+(X ), with Ψ+(X ) ∈ E−
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Center manifold in Rn

Pliss 1964, Kelley 1967, Lanford 1973, Henry 1981, Mielke 1988, Kirrmann 1991,

Vanderbauwhede - Iooss 1992

du

dt
= Lu + R(u, µ), (u, µ) ∈ R

n × R
m,R(0, 0) = 0, DuR(0, 0) = 0.

spectrum of L = σ = σ− ∪ σ0

Hypothesis: σ0 = finite number of eigenvalues of finite mutiplicities
supλ∈σ−λ < −γ < 0 (gap assumption)
R

n = E0 ⊕ E−, u = X + Y , X = P0u,Y = P−u

µ

0
0

left: linear case for µ = 0, asymptotic solutions ∈ E0, right: non linear case
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Center Manifolds- idea of proof

Theorem:

Mµ = {u = u0 + Ψ(u0, µ), (u0, µ) ∈ E0 × R
m}

Ψ ∈ Ck(O0,E−), O0 neighb of 0 in E0 × R
m

Ψ(0, 0) = 0,Du0Ψ(0, 0) = 0.

Mµ locally invariant and locally attracting.
Idea of proof: Even though u(t) stays bounded for t ∈ R, the first term
and the integral below with L0 may grow polynomially in t as t → −∞.

u(t) = eL0tX +

∫ t

0
eL0(t−s)P0R(u(s))ds +

∫ t

−∞

eL−(t−s)P−R(u(s))ds.

Need of a (smooth) ”cut-off” function on E0, modifying and making the
system linear for its part in E0, outside a ball of small radius. This allows
to work in a space of functions growing at infinity.
New complications due to the fact that we deal with such functions (which
may grow at −∞ with a small exponential).
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Center Manifolds in infinite dimensions

du

dt
= Lu + R(u, µ)

R(0, 0) = 0, DuR(0, 0) = 0

L linear bounded Z → X ,
Z cont. embedded in X (both Hilbert spaces)
R : (Z × R

m) → X of class Ck , k ≥ 2 in a neighborhood of 0
Hypothesis:
(i) (gap assumption) spectrum σ of L = σ0 ∪ σ−,
For λ ∈ σ0,Reλ = 0,
supλ∈σ−Reλ < −γ < 0;
(ii) σ0 = finite number of eigenvalues of finite mutiplicities
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Center Manifolds in infinite dimensions - continued

Hypothesis on the linearized system

||(iωI − L)−1||L(X ) ≤
C

|ω|
for ω ∈ R, |ω| large.

Then the following properties (iii) and (iv) are satisfied.
Define:
E0 = P0X = P0Z, Zh = PhZ,X = E0 ⊕Xh,Z = E0 ⊕Zh, η ∈ [0, γ]

(iii) duh

dt
= Lhuh + f , f ∈ C 0(R,X ), supt∈Reηt ||f (t)||X <∞,

Then, there exists a unique uh = Khf , such that
Khf ∈ C 0(R,Z), supt∈Reηt ||Khf (t)||Z < C (η)supt∈Reηt ||f (t)||X ,
C (η) continuous on [0, γ].

(iv) duh

dt
= Lhuh, u|t=0 ∈ Zh.

Then, there exists a unique uh ∈ C 0(R+,Zh), ||uh||Z ≤ cηe
−ηt , t ≥ 0.
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Reduced system for asymptotic dynamics and Symmetries

du0

dt
= L0u0 + P0R(u0 + Ψ(u0, µ), µ) := f (u0, µ)

f (0, 0) = 0,Du0 f (0, 0) = L0, spectrum of L0 : σ0

Frequent case: 0 is a solution of the system for any µ
R(0, µ) = 0, hence Ψ(0, µ) = 0, f (0, µ) = 0 and

the linear operator Aµ := Du0 f (0, µ) has the eigenvalues close to the
imaginary axis of the linearized operator Lµ := L + DuR(0, µ)
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Reduced system for asymptotic dynamics and Symmetries

du0

dt
= L0u0 + P0R(u0 + Ψ(u0, µ), µ) := f (u0, µ)

f (0, 0) = 0,Du0 f (0, 0) = L0, spectrum of L0 : σ0

Frequent case: 0 is a solution of the system for any µ
R(0, µ) = 0, hence Ψ(0, µ) = 0, f (0, µ) = 0 and

the linear operator Aµ := Du0 f (0, µ) has the eigenvalues close to the
imaginary axis of the linearized operator Lµ := L + DuR(0, µ)

Presence of symmetry

TLu = LTu, TR(u, µ) = R(Tu, µ)

T |E0 := T0 is an isometry

Then

TΨ(u0, µ) = Ψ(T0u0, µ), for u0 ∈ E0

T0f (u0, µ) = f (T0u0, µ).
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Computation of center manifold and reduced system

NB. We compute Taylor expansions, in powers of (u0, µ) ∈ E0 × R
m

Du0Ψ(u0, µ)
du0

dt
=

duh

dt

replace du0
dt

by L0u0 + P0R(u0 + Ψ(u0, µ), µ),

and replace duh

dt
by LhΨ(u0, µ) + PhR(u0 + Ψ(u0, µ), µ)

and identify powers of (u0, µ).
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Computation of center manifold and reduced system

NB. We compute Taylor expansions, in powers of (u0, µ) ∈ E0 × R
m

Du0Ψ(u0, µ)
du0

dt
=

duh

dt

replace du0
dt

by L0u0 + P0R(u0 + Ψ(u0, µ), µ),

and replace duh

dt
by LhΨ(u0, µ) + PhR(u0 + Ψ(u0, µ), µ)

and identify powers of (u0, µ).
Example: quadratic order in u0:
f (u0, µ) = L0u0 + P0R2,0(u0) + P0R0,1(µ) + h.o.t., h.o.t. depends on Ψ

Du0Ψ2,0(u0)L0u0 − LhΨ2,0(u0) = PhR2,0(u0) leads to
Ψ2,0(u0) =

∫ ∞

0 eLhtPhR2,0(e
−L0tu0)dt.

This may become tedious, and may lead to a complicate vector field in E0,
in case of dimension > 1, specially if orders > 2 are required.
Our purpose now is to simplify the reduced system, in using Symmetries
and Normal form theory.
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Normal forms

Poincaré, Birkhoff, Arnold, Belitskii, Elphick et al...
p ≥ 2, ∃ polynomial Φµ : E0 → E0, of degree p and a neighborhood O0 of
0 in E0 × R

m, such that the local change of variable in E0

u0 = v0 + Φµ(v0)

transforms the reduced system into a new system where Nµ is a
polynomial of degree p such that

dv0

dt
= L0v0 + Nµ(v0) + ρ(v0, µ),

N0(0) = 0, Dv0N0(0) = 0

eL∗

0 t
Nµ(v0) = Nµ(e

L∗

0 tv0),∀(t, v0) ∈ R × E0,

ρ(v0, µ) = o(||v0||
p).

NB. In case of analytical vector fields, there are results optimizing the
degree p, giving a rest ρ exponentially small (G.I., E.Lombardi 2005)
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Normal forms - continued

Equivalent characterization:

Dv0Nµ(v)L∗0v = L∗0Nµ(v) for all v ∈ E0 and µ ∈ R
m
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Normal forms - continued

Equivalent characterization:

Dv0Nµ(v)L∗0v = L∗0Nµ(v) for all v ∈ E0 and µ ∈ R
m

Case of a linear operator L + Rµ, R0 = 0
interesting when L is not diagonalizable.
Then Φµ is linear (only degree 1 terms); the normal form L + Nµ is also
linear, and

NµL
∗ = L∗Nµ.
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Normal forms - continued

Equivalent characterization:

Dv0Nµ(v)L∗0v = L∗0Nµ(v) for all v ∈ E0 and µ ∈ R
m

Case of a linear operator L + Rµ, R0 = 0
interesting when L is not diagonalizable.
Then Φµ is linear (only degree 1 terms); the normal form L + Nµ is also
linear, and

NµL
∗ = L∗Nµ.

Cases with Symmetries Assume that the nonlinear system is equivariant

under an isometry T in R
n

Then, polynomials Nµ and Φµ commute with T .
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Normal forms - idea of proof

du/dt = Lu + R(u), u ∈ R
n, p is a given number ≥ 2. No µ here, for

simplification.

R(u) =
∑

2≤q≤p

Rq(u
(q)) + o(||u||p),

Rq is q-linear symmetric on (Rn)q. Analogous notation for Φq and Nq.
Differentiate u = v + Φ(v) with respect to t, and replace du/dt and
dv/dt:

(I + DΦ(v))(Lv + N(v) + ρ(v)) = L(v + Φ(v)) + R(v + Φ(v))

Identify powers of v :

ALΦq = Qq − Nq, q = 2, 3, ...p; Q2 = R2

ALΦ(v) : = DΦ(v)Lv − LΦ(v) for all v ∈ R
n.

Qq − Nq ∈ ker(AL∗)⊥, i.e. we can choose Nq = Pker(AL∗ )Qq, and

Φq ∈ ker(AL)⊥ (makes the solution uniquely determined).
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Computation of Center Manifold and Normal form

Center manifold theorem gives

u = u0 + Ψ(u0, µ), u0 ∈ E0 and Ψ(u0, µ) ∈ Zh

Normal form applied to the reduced system for u0 ∈ E0:

u0 = v0 + Φµ(v0),
dv0

dt
= L0v0 + Nµ(v0) + ρ(v0, µ).

Consequently, we can write

u = v0 + Ψ̃(v0, µ),

with
Ψ̃(v0, µ) = Φµ(v0) + Ψ(v0 + Φµ(v0), µ) ∈ Z.

Ψ̃(v0, µ) belongs to the entire space Z, and not to Zh.
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Computation of Center Manifold and Normal form -

continued

Differentiating with respect to t and replacing du/dt and dv0/dt, leads to

Dv0Ψ̃(v0, µ)L0v0 − LΨ̃(v0, µ) + Nµ(v0) = Q(v0, µ),

Q(v0, µ) = Πp

(
R(v0 + Ψ̃(v0, µ), µ) − Dv0Ψ̃(v0, µ)Nµ(v0)

)
.

Πp represents the linear map that associates to a map of class Cp the
polynomial of degree p in its Taylor expansion.

Projecting on E0 and Zh gives :

AL0
Ψ̃0(v0, µ) + Nµ(v0) = Q0(v0, µ)

Dv0Ψ̃h(v0, µ)L0v0 − LhΨ̃h(v0, µ) = Qh(v0, µ),

where

Q0(v0, µ) = P0Q(v0, µ), Qh(v0, µ) = PhQ.
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Example: Hopf bifurcation

σ0 = {±iω}, L0ζ = iωζ, µ ∈ R

u = v0 + Ψµ(v0), Ψµ(v0) ∈ Z

For v0(t) ∈ E0, it is convenient to write

v0(t) = A(t)ζ + A(t)ζ, A(t) ∈ C,

and since Nµ(A,A) = (AQ(|A|2, µ),AQ(|A|2, µ)), the reduced system
reads

dA

dt
= iωA + AQ(|A|2, µ) + ρ(A,A, µ)

Q complex-valued, polynomial in its first argument, with Q(0, 0) = 0.
We need to compute coefficients a and b in

Q(|A|2, µ) = aµ+ b|A|2 + O((|µ| + |A|2)2).
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Example: Hopf bifurcation - continued 1

Ψql (v
(q)
0 , µ(l)) = µl

∑

q1+q2=q

Aq1A
q2

Ψq1q2l , Ψq1q2l ∈ Z.

By identifying the terms of order O(µ), O(A2), and O(AA), we obtain

−LΨ001 = R01,

(2iω − L)Ψ200 = R20(ζ, ζ),

−LΨ110 = 2R20(ζ, ζ).

Operators L and (2iω − L) are invertible, so that Ψ001, Ψ200, and Ψ110

are uniquely determined . Next, identify the terms of order O(µA) and
O(A2A) :

(iω − L)Ψ101 = −aζ + R11(ζ) + 2R20(ζ,Ψ001),

(iω − L)Ψ210 = −bζ + 2R20(ζ,Ψ110) + 2R20(ζ,Ψ200) + 3R30(ζ, ζ, ζ).
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Example: Hopf bifurcation - continued 2

The range of (iω − L) is of codimension 1, so we can solve these equations
and determine Ψ101 and Ψ200, provided the right hand sides satisfy one
solvability condition.
The solvability condition is that the right hand sides be orthogonal to the
kernel of the adjoint (−iω − L∗) of (iω − L). The kernel of (−iω − L∗) is
spanned by ζ∗ ∈ X ∗ that we choose such that 〈ζ, ζ∗〉 = 1. Then

a = 〈R11(ζ) + 2R20(ζ,Ψ001), ζ
∗〉,

b = 〈2R20(ζ,Ψ110) + 2R20(ζ,Ψ200) + 3R30(ζ, ζ, ζ), ζ
∗〉.
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Example: Hopf bifurcation with O(2) symmetry

Assume that we have a group {Rϕ,S;ϕ ∈ R/2πZ} representation of an
O(2) symmetry in X and Z: we have S, and Rϕ with S2 = I, and

RϕS = SR−ϕ for all ϕ ∈ R/2πZ

Rϕ ◦ Rψ = Rϕ+ψ for all ϕ, ψ ∈ R/2πZ

R0 = I

Assume that our system commutes with this representation of O(2):

SL = LS, R(Su, µ) = SR(u, µ) for all µ ∈ R

and RϕL = LRϕ ,R(Rϕu, µ) = RϕR(u, µ) for all ϕ ∈ R/2πZ, u ∈ Z, and
µ ∈ R.
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Hopf bifurcation with O(2) symmetry - continued 1

Assume that σ0 = {±iω}, and eigenvectors are not invariant under the
action of Rϕ.
Notice that any eigenvalue λ of L that has an eigenvector ζ not invariant
under the action of Rϕ is at least geometrically double.
Generically, ±iω are algebraically and geometrically double eigenvalues.
Then the restriction of the action of Rϕ to the eigenspaces associated with
the eigenvalues ±iω is not trivial, and we can choose the eigenvectors
{ζ0, ζ1} associated with iω such that

Rϕζ0 = e imϕζ0, Rϕζ1 = e−imϕζ1, Sζ0 = ζ1, Sζ1 = ζ0.

{ζ0, ζ1} are the eigenvectors associated with −iω.

G. Iooss (IUF, Univ. Nice) water waves 23 / 34



Hopf bifurcation with O(2) symmetry - Normal form

u = v0 + Ψ̃(v0, µ), v0 ∈ E0, Ψ̃(v0, µ) ∈ Z,

v0(t) = A(t)ζ0 + B(t)ζ1 + A(t)ζ0 + B(t)ζ1.

Ψ̃(·, µ) commutes with Rϕ and S. Define Nµ = (Φ0,Φ1,Φ0,Φ1), where
Φj , j = 0, 1, are polynomials of (A,B ,A,B) with coefficients depending
upon µ. Using successively the characterization theorem and the fact that
Nµ commutes with Rϕ and S, we find that

Φ0(e
−iωtA, e−iωtB , e iωtA, e iωtB) = e−iωtΦ0(A,B ,A,B),

Φ1(e
−iωtA, e−iωtB , e iωtA, e iωtB) = e−iωtΦ1(A,B ,A,B),

Φ0(e
imϕA, e−imϕB , e−imϕA, e imϕB) = e imϕΦ0(A,B ,A,B),

Φ1(e
imϕA, e−imϕB , e−imϕA, e imϕB) = e−imϕΦ1(A,B ,A,B),

Φ0(B ,A,B,A) = Φ1(A,B ,A,B)

for all t ∈ R and ϕ ∈ R/2πZ.
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Hopf bifurcation with O(2) symmetry - Normal form-

continued

dA

dt
= iωA + A(aµ+ b|A|2 + c |B |2) + ρ(A,B ,A,B, µ)

dB

dt
= iωB + B(aµ+ b|B |2 + c |A|2) + ρ(B ,A,B,A, µ),

with ρ(A,B ,A,B , µ) = O((|A| + |B |)(|A|2 + |B |2 + |µ|)2).

A = r0e
iθ0, B = r1e

iθ1 , then for the truncated system

dθ0
dt

= ω + aiµ+ bi r
2
0 + ci r

2
1 ,

dθ1
dt

= ω + aiµ+ bi r
2
1 + ci r

2
0 .
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Hopf bifurcation with O(2) symmetry - Dynamics

dr0

dt
= r0(arµ+ br r

2
0 + cr r

2
1 ),

dr1

dt
= r1(arµ+ br r

2
1 + cr r

2
0 ),

br

cr

0

phase portraits in the (r0, r1) plane, in the case arµ > 0. For br < 0 two
pairs of equilibria (±r∗(µ), 0) and (0,±r∗(µ)) corresponding to rotating

waves. For br + cr < 0 pair of equilibria with r0 = r1, corresponding to
standing waves.
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Couette - Taylor hydrodynamic problem

R
R

1
2

Ω1

Ω2

Σ

z

h

∂V

∂t
+ (V · ∇)V +

1

ρ
∇p = ν∆V , ∇ · V = 0, + Boundary Cond.

Couette flow In cylindrical coordinates (r , θ, z)

V (0) = (0, v0(r), 0), p(0) = ρ

∫
v2
0

r
dr

v0(r) =
Ω2R

2
2 − Ω1R

2
1

R2
2 − R2

1

r +
(Ω1 − Ω2)R

2
1R2

2

R2
2 − R2

1

1

r
.
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Couette - Taylor problem (2)

We set V = V (0) + U, p = p(0) + ρq,

∂U

∂t
= ν∆U − (V (0) · ∇)U − (U · ∇)V (0) − (U · ∇)U −∇q

∇ · U = 0,U|r=R1,R2
= 0

Periodicity condition in the axis direction:
U(x + hez , t) = U(x , t),∇p(x , t) = ∇p(x + hez , t) completed by a zero
flux condition through any section of the cylindrical domain.

X =

{
U ∈

(
L2(Σ × (R/hZ))

)3
;∇ · U = 0, U · n|∂Σ×R = 0,

∫

Σ
U · n dS = 0

Z =
{
U ∈ X ;U ∈

(
H2(Σ × (R/hZ))

)3
,U|∂Σ×R = 0

}

The orthogonal complement of X in
(
L2(Σ × (R/hZ))

)3
is the space

{∇φ;φ ∈ H1(Σ × (R/hZ)) + zR}, i.e., ∇φ is a periodic function, while φ
is not periodic .
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Couette - Taylor problem (3)

dU

dt
= LU + R(U), in X for U(·, t) ∈ Z

LU = Π0

(
ν∆U − (V (0) · ∇)U − (U · ∇)V (0)

)
, R(U) = −Π0 ((U · ∇)U) .

Representations of symmetries commuting with the system

(τ aU)(r , θ, z) = U(r , θ, z + a), a ∈ R/hZ,

(SU)(r , θ, z) = (Ur (r , θ,−z),Uθ(r , θ,−z),−Uz((r , θ,−z)),

(RφU)(r , θ, z) = U(r , θ + φ, z), φ ∈ R/2πZ,

satisfy (O(2) action)

τ aS = Sτ−a, τ h = I, τ aτ b = τ a+b.

Rφ represents a SO(2) action, which commutes with the O(2) action.
G. Iooss (IUF, Univ. Nice) water waves 29 / 34



Couette - Taylor problem (4)

Three dimensionless parameters appear in the equations:

Ωr =
Ω2

Ω1
, η =

R1

R2
, R =

R1Ω1(R2 − R1)

ν

Fixing Ωr and η, we take R as bifurcation parameter, and denote L by LR.
For low values of R, the spectrum of LR is strictly contained in the left
half-complex plane, i.e., the Couette flow is stable.
Instabilities are obtained by increasing R (for instance by increasing the
rotation rate of the inner cylinder).
The Case Ωr > 0 or Ωr < 0 Close to 0
In this case it has been shown numerically that as R increases, there is a
critical value Rc for which an eigenvalue of LR crosses the imaginary axis,
passing through 0 from the left to the right, and all other eigenvalues
remain in the left half-complex plane.
0 is a double eigenvalue with complex conjugated eigenvectors

ζ = e ikcz Û(r), ζ = Sζ, τ aζ = e ikcaζ for all a ∈ R.
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Couette - Taylor problem (5)

Two-dimensional center manifold: U = Aζ + Aζ + Ψ(A,A, µ)
Reduced system in C: dA

dt
= f (A,A, µ)

Symmetries: f (A,A, µ) = f (A,A, µ)

f (e ikcaA, e−ikcaA, µ) = e ikcaf (A,A, µ), for any a ∈ R

Then dA
dt

= Ag(|A|2, µ) = αµA + bA|A|2 + h.o.t., coef α and b ∈ R.
α > 0, b < 0 when Ωr > 0, and b changes sign for a small value Ωr < 0

U0

Uφ

00

µ < 0 µ > 0 circle of stable equilibria Uφ
U0 and τ π/kc

U0 = Uπ invariant under S implies horizontal cells.
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Couette - Taylor problem (6)

R
R

1
2

Ω1

Ω2

Σ

z

h

(i) (ii) (iii) (iv)
(i) Side view of Taylor vortex flow. (ii) Meridian view of Taylor cells.
(iii) Helicoidal waves (traveling in both z and θ directions).
(iv) Ribbons (standing in z direction, traveling in θ direction)
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Couette - Taylor problem (7)

Case Ωr < 0, not too close to 0
Numerical results show that the Couette flow first becomes unstable at a
critical value Rc of R, when a pair of complex conjugate eigenvalues of
LR crosses the imaginary axis, from the left to the right, as R is increased,
and the rest of the spectrum stays in the left half-complex plane. These
two eigenvalues are both double, as this case is generic for O(2)
equivariant systems, with two eigenvectors of the form

ζ0 = e i(kc z+mθ)Û(r), ζ1 = e i(−kc z+mθ)
SÛ(r),

where m 6= 0 (non-axisymmetric eigenvectors).
Four-dimensional center manifold, and the reduced vector field commute
with the actions of symmetries :

τ aζ0 = e ikcaζ0, τ aζ1 = e−ikcaζ1, Sζ0 = ζ1, Sζ1 = ζ0,

Rφζ0 = e imφζ0, Rφζ1 = e imφζ1.

We are here in the presence of a Hopf bifurcation with O(2) symmetry,
with an additional SO(2) symmetry represented by Rφ.
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Couette - Taylor problem (8)

The dynamics are ruled by a system in C
2 of the form

dA

dt
= AP(|A|2, |B |2, µ)

dB

dt
= BP(|B |2, |A|2, µ),

µ = R−Rc , and P(|A|2, |B |2, µ) = iω + aµ+ b|A|2 + c |B |2 + h.o.t.
is a smooth function of its arguments, with no “remainder ρ.”
Solutions corresponding to A = 0 or to B = 0 travel along and around the
z-axis with constant velocities. These are helicoidal waves, also called
spirals, and they are axially periodic just as the Taylor vortex flow.
The bifurcating solutions obtained for |A| = |B | are standing waves

located in fixed horizontal periodic cells, as they are for the Taylor vortex
flow, but with a non-axisymmetric internal structure rotating around the
axis with a constant velocity. These solutions are also called ribbons.
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