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Godrèche C. & Manneville P., Cambridge UP.

Manneville P. 1990 Dissipative Structures and Weak Turbulence, Academic
Press.

Schmid P.J. & Henningson D.S. Stability and Transition in Shear Flows,
Springer-Verlag.

19th September 2015 3 / 95



Instabilities of fluids at rest

1. Instabilities of fluids at rest
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Instabilities of fluids at rest

Gravity-driven Rayleigh-Taylor instability (1)

Pending drops under a suspended liquid film

Descending fingers of salt water into fresh water
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Instabilities of fluids at rest

Gravity-driven Rayleigh-Taylor instability (2)

Analysis with viscosity and bounding walls neglected.

Base state:

fluids at rest with horizontal interface,

hydrostatic pressure distribution.

Perturbed flow:
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Instabilities of fluids at rest

Gravity-driven Rayleigh-Taylor instability (3)

Linearized perturbation equations and perturbations ∝ ei(kx−ωt)

→ Dispersion relation ω2 =
(ρ1 − ρ2)gk + k3γ

ρ1 + ρ2

→ Instability (complex ω) when ρ1 < ρ2, with growth rate:
(lc capillary length, τref capillary time)
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→ Long-wave instability
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Instabilities of fluids at rest

Instabilities related to Rayleigh-Taylor

Inertial instability of accelerated flows (Taylor 1950)

Gravitational instability in astrophysics (Jeans 1902)

ω2 = c2
s k

2 − 4πGρ0.
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Instabilities of fluids at rest

Capillary Rayleigh-Plateau instability
jet of water drops on a spider web

r−, p+ −→
r+, p− −→

ωi

ka

19th September 2015 9 / 95



Instabilities of fluids at rest

Buoyancy-driven Rayleigh-Bénard instability

Linear stability analysis → dispersion curve

Bifurcation parameter:
Rayleigh number

Ra =
αpg(T1 − T2)d3

νκ
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Instabilities of fluids at rest

A toy-model: convection in an annulus (1)
(Welander 1967)

Base state: fluid at rest with temperature

T = T0 − T1
z

a
= T0 + T1 cosφ.

Momentum conservation:

∂U

∂t
= − 1

ρa

∂p

∂φ
+ αg(T − T ) sinφ− γU.

Energy conservation:

∂T

∂t
+

U

a

∂T

∂φ
= k(T − T ).

Temperature sought for as

T (t, φ) = T + TA(t) sinφ− TB (t) cosφ,
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Instabilities of fluids at rest

A toy-model: convection in an annulus (2)

The change of scales

X ∝ U, Y ∝ TA, Z ∝ TB , τ ∝ t,

then provides the Lorenz system (1963)

∂τX = −PX + PY

∂τY = −Y − XZ + RX

∂τZ = −Z + XY

where P = k/γ, R = αgT1/2γka.

Stability analysis of the fixed point (0, 0, 0) (fluid at rest)
→ Supercritical pitchfork bifurcation at Rc1 = 1 (convection)

Chaotic behavior beyond Rc2(P) > Rc1 via a subcritical Hopf bifurcation
(Lorenz strange attractor).
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Instabilities of fluids at rest

Thermocapillary Bénard-Marangoni instability
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Instabilities of fluids at rest

Saffman-Taylor instability of fronts between viscous fluids

19th September 2015 14 / 95



Stability of open flows: basic ideas

2. Stability of open flows: basic ideas
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Stability of open flows: basic ideas

Forced flow: canonic forcings

Consider the (1D) linearized evolution equation for u(x , t)

L u(x , t) = S(x , t)

L: differential linear operator involving x- and t-derivatives
S(x , t): forcing.

Three types of elementary forcing functions of special importance:

S(x , t) = F (x)δ(t) (initial value problem)

S(x , t) = δ(x)δ(t) (impulse response problem)

S(x , t) = δ(x)H(t)e−iωt (periodic forcing problem)

where δ and H are the Dirac and Heaviside functions.

19th September 2015 16 / 95



Stability of open flows: basic ideas

Impulse response – Definitions

Spatiotemporal evolution of a disturbance localized at x = 0 at t = 0

0 20 40
0
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t
(a)

0 20 40
0
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t

(b)
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0

x

t

(c)

(a): Linearly stable flow

(b): Linearly unstable flow,
convective instability

(c): Linearly unstable flow,
absolute instability
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Stability of open flows: basic ideas

Illustration: waves on a falling film (1)

Natural waves

Forced waves, 5.5 Hz
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Stability of open flows: basic ideas

Illustration: waves on a falling film (2)

A perturbation generated at x = t = 0 amplifies while it is convected downstream:

x = 44 cm

x = 97 cm
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Stability of open flows: basic ideas

Stability criteria

It can be shown that:

A necessary and sufficient condition for stability is that the growth rates of all
the modes with real wavenumber k are negative (temporal stability)

The criterion for absolute instability is that there exists some wavenumber k0

with zero group velocity and positive growth rate.

A convective instability amplifies any unstable perturbation, and advects it
downstream (“noise amplifier”)

An absolutely unstable flow responds selectively to the perturbation with zero
group velocity: it behaves like an oscillator with its own natural frequency.
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Inviscid instability of parallel flows

3. Inviscid instability of parallel flows

Large Reynolds number flows (negligible viscous effects)

Far from solid boundaries
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Inviscid instability of parallel flows

Illustration 1: tilted channel
(Reynolds 1883, Thorpe 1969)

t = 0

t = 0+
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Inviscid instability of parallel flows

Illustration 2: wind in a stratified atmosphere

Flowing layer

Air layer at rest
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Inviscid instability of parallel flows

Illustration 3: rising mixing layer

Water Water

+ Air
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Inviscid instability of parallel flows

Illustration 4: jet

Jet of carbone dioxyde 6 mm in diameter issuing into air at a speed of 40 m s−1

(Re = 30 000).
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Inviscid instability of parallel flows

Illustration 5: wake

inflection

Wake of a cylinder in water flowing at 1.4 cm s−1 (Re = 140).

19th September 2015 26 / 95



Inviscid instability of parallel flows

General results – Base flow

Ignoring viscous effects, and with unit scales L, V and ρV 2,
the governing equations are the Euler equations

divU = 0,

∂tU + (U · grad)U = −gradP.

These equations have the family of base solutions

U(x, t) = U(y)ex , P(x, t) = P,

corresponding to parallel flow.
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Inviscid instability of parallel flows

General results – Linearized stability problem

Linearized equations for the perturbed base flow U + u, P + p

divu = 0,

(∂t + U∂x )u + v∂yU ex = −grad p.

Thanks to the translational invariance in t, x and z , the solution can be sought in
the form of normal modes such as

u(x, t) = û(y)ei(kx x+kz z−ωt) + c.c.,

whose amplitudes û(y), ... satisfy the homogeneous system:

ikx û + ∂y v̂ + ikz ŵ = 0,

i(kxU − ω)û + ∂yUv̂ = −ikx p̂,

i(kxU − ω)v̂ = −∂y p̂,

i(kxU − ω)ŵ = −ikz p̂.

with the conditions that the perturbations fall off for y → ±∞ or that
v̂(y1) = v̂(y2) = 0 at impermeable walls.
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Inviscid instability of parallel flows

General results – Dispersion relation

The above system can formally be written as the generalized eigenvalue problem

Lφ = ωMφ,

where φ = (û, v̂ , ŵ , p̂) and L, M linear differential operators.

This problem has a nonzero solution φ only if the operator L− ωM is
noninvertible, i.e., if for a given wave number the frequency ω is an eigenvalue.
This condition can be written formally as

D(k, ω) = 0,

which is the dispersion relation of perturbations of infinitesimal amplitude.
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Inviscid instability of parallel flows

General results – Reduction to a 2D problem

Using the Squire transformation

k̃2 = k2
x + k2

z , ω̃ = (k̃/kx )ω,

k̃ ũ = kx û + kz ŵ , ṽ = v̂ , p̃ = (k̃/kx ) p̂

the governing equations become, with c̃ = c = ω/kx

ik̃ ũ + ∂y ṽ = 0,

ik̃(U − c̃)ũ + ∂yU ṽ = −ik̃ p̃,

ik̃(U − c̃)ṽ = −∂y p̃,
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Inviscid instability of parallel flows

General results – Squire theorem

Knowing the dispersion relation of the two-dimensional system

D̃(k̃ , ω̃) = 0,

the dispersion relation for three-dimensional perturbations can be obtained by
means of the Squire transformation:

D(k, ω) = D̃

(√
k2

x + k2
z ,

√
k2

x + k2
z

kx
ω

)
= 0.

→ Squire’s theorem. For any three-dimensional unstable mode (k, ω) of

temporal growth rate ωi there is an associated two-dimensional mode (k̃, ω̃) of
temporal growth rate ω̃i = ωi

√
k2

x + k2
z /kx , which is more unstable since ω̃i > ωi .

Therefore when the problem is to determine an instability condition it is sufficient
to consider only two-dimensional perturbations.
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Inviscid instability of parallel flows

The Rayleigh equation and inflection point theorem

Introducing the stream function, the 2D stability problem reduces to the Rayleigh
equation

(U − c)(∂yy ψ̂ − k2ψ̂)− ∂yyU ψ̂ = 0

Thus, if ψ̂ is eigenfunction with eigenvalue c , then so are ψ̂∗ and c∗: stability
implies real c (ci = 0, i.e. neutral stability).

The Rayleigh theorem. An inflection point in the velocity profile U(y) is a
necessary (but not sufficient) condition for instability.

Assume that the flow is unstable (ci 6= 0). Divide the Rayleigh equation by
(U − c), multiply by ψ̂∗, integrate by parts between the walls, with
ψ̂(y1) = ψ̂(y2) = 0, the imaginary part of the result is

ci

∫ y2

y1

∂yyU

|U − c |2
|ψ̂|2dy = 0.

Since ci 6= 0 by assumption, ∂yyU must change sign.
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Inviscid instability of parallel flows

Jump conditions for piecewise-linear velocity profile

The eigenfunctions of the perturbations are exponentials within each layer, and
only need to be matched at the discontinuities.
Let y = y0 + η(x , t) be the perturbed position of a discontinuity at y = y0, and n
be the normal. The normal velocity of the fluid must be continuous and equal to
the velocity w · n of the interface:

(U+ · n)(y0 + η) = (U− · n)(y0 + η) = w · n.

Linearizing at y = y0, with n = (−∂xη, 1) and w · n = −∂tη, introducing the
normal modes and eliminating η̂ gives:

∆

(
ψ̂

U − c

)
= 0, where ∆[X ] = X+(y0)− X−(y0).

The continuity of pressure gives similarly

∆[(U − c)∂y ψ̂ − ∂yU ψ̂] = 0.

→ Complete determination of the eigenfunctions.
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Inviscid instability of parallel flows

Kelvin-Helmholtz instability of a vortex sheet

The solution of the Rayleigh equation, ψ̂j = Aje
−ky + Bje

ky , j = 1, 2, the fall-off
of the perturbations at infinity (A1 = 0 and B2 = 0 for k > 0), and the jump
conditions at the interface gives

(U1 − c)A2 − (U2 − c)B1 = 0

(U2 − c)A2 + (U1 − c)B1 = 0

which has a nontrivial solution only when (dispersion relation)
(U1 − c)2 + (U2 − c)2 = 0,

i .e. c =
ω

k
= Uav ± i∆U, with 2Uav = U1 + U2, 2∆U = U1 − U2.
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Inviscid instability of parallel flows

Mechanism of the Kelvin-Helmholtz instability

“Bernoulli effect”
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Inviscid instability of parallel flows

Kelvin-Helmholtz with vorticity layer of finite thickness 2δ
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→ Stable short waves, and long-wave instability with ωi,max ≈ 0.2U/δ

Inviscid analysis valid whenever δ/∆U � δ2/ν, i.e. Re � 1.
Viscous effects decrease ωi and kcutoff (also increase δ).
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Inviscid instability of parallel flows

Couette-Taylor centrifugal instability

The Couette flow between two coaxial cylinders may be unstable due to the
centrifugal force.

primary
vortices

(co-rotation)

secondary
undulated vortices

Landmark experiments
by G. I. Taylor (1923)
1: inner
2: outer
a2/a1 fixed

Rayleigh (1916): a stable stratification of centrifugal force satisfies Ω1a
1
1 < Ω2a

2
2.
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Viscous instability of parallel flows

4. Viscous instability of parallel flows

Boundary layers and Poiseuille flow have no inflection point

However, experiments show that that they may be unstable...
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Viscous instability of parallel flows

Illustration 1: Poiseuille flow in a tube
(Reynolds 1883)
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Viscous instability of parallel flows

Illustration 2: Boundary layer

Tollmien-Schlichting waves −→

19th September 2015 40 / 95



Viscous instability of parallel flows

General results – 2nd Squire’s theorem

The analysis goes along the same lines as for inviscid flow, with the viscous
diffusion term

1

Re
∆U, Re =

UL

ν

The generalized eigenvalue problem has nontrivial solution when the operator
is singular, i.e. D(k, ω,Re) = 0.

Squire’s theorem. For any unstable oblique mode (k, ω) of temporal growth
rate ωi for Reynolds number Re it is possible to associate a two-dimensional
mode (k̃, ω̃) of temporal growth rate ω̃i = ωi

√
k2

x + k2
z /kx , higher than ωi ,

at a Reynolds number R̃e = Re kx/
√

k2
x + k2

z , lower than Re.
Corollary. If there exists some Rec above which a flow is unstable, the
destabilizing normal mode for Re = Rec is 2D.
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Viscous instability of parallel flows

The Orr-Sommerfeld equation
(Orr 1907, Sommerfeld 1908)

For plane flow, 2D disturbances obey the The Orr-Sommerfeld equation (Rayleigh
equation + viscous term):

(U − c)(∂yy − k2)ψ̂ − ∂yyU ψ̂ =
1

ikRe
(∂yy − k2)2ψ̂.

No exact solution except for linear velocity profile (integrals of Airy functions)

Difficult to solve for high Re, especially near the critical layer (where c = U)
and near walls or interfaces

May be solved analytically using perturbation methods (small or large k,
small or large Re)

May be solved numerically using shooting or spectral methods
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Viscous instability of parallel flows

Plane Poiseuille flow (1)

Experiment (Nishioka et al. 1075): Eigenfunctions:
a ribbon excites Tollmien-Schlichting waves.
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Viscous instability of parallel flows

Plane Poiseuille flow (2)

Spatial evolution of the forced disturbances ...
for increasing Re = 4000...8000 ... for varying frequency

The spatial and temporal growth rates are related through the group velocity:

ωT
i = −cgk

S
i (Gaster 1962)
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Viscous instability of parallel flows

Plane Poiseuille flow (3)

Spatial growth rates versus frequency β = 2πfU/h
for increasing Re = 3000...7000 and comparison with calculations
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Viscous instability of parallel flows

Plane Poiseuille flow (4)

Stability diagram

krh

Re ×10−3

stable

unstable
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Viscous instability of parallel flows

Transient growth

When the disturbance is not well controlled (amplitude & 1%), instability occurs
well below Re = 5772.

An explanation relies on the non-normality of the Orr-Sommerfeld operator and
the associated Orr equation for the y -vorticity, which implies transient growth of
the superposition of stable eigenmodes, and may trigger nonlinear behaviour.

Longitudinal vortices give rise to the strongest transient growth (optimal
perturbation).
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Viscous instability of parallel flows

Plane Poiseuille flow: tentative bifurcation diagram
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Viscous instability of parallel flows

Poiseuille flow in a pipe

... is linearly stable!

Difficulties begin...
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Viscous instability of parallel flows

Boundary layer on a flat plate (1)

Velocity fluctuations of a forced Tollmien–Schlichting wave, measured at different
positions (in feet) downstream from the leading edge, for upstream velocity
U∞ = 36.6 m s−1 (Schubauer & Skramstad 1947).
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Viscous instability of parallel flows

Boundary layer on a flat plate (2)

Although the flow is not strictly parallel (δ(x) increases),
local analysis is possible with U(x , y), and x treated as a parameter.

u′(y) U(y)

Reδ

ln A
Amin
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Viscous instability of parallel flows

Boundary layer on a flat plate (3)

Reδ

F × 104

stable unstable

Marginal stability: (- -) nonparallel theory, (×) measurements, (•) DNS.
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Nonlinear dynamics with few degrees of freedom

5. Nonlinear dynamics with few degrees of freedom

What happens beyond the exponential growth, when nonlinear terms are no
longer negligible?

No general theory

‘Weakly nonlinear analysis’ particularly important owing to its fairly general
nature based on perturbation methods.
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Nonlinear dynamics with few degrees of freedom

Beyond the exponential growth: the Landau equation

According to the linear stability theory, a perturbation of a base flow can be
expressed as a sum of uncoupled eigenmodes:

u(x, t) =
1

2
(A(t)f (x) + A∗(t)f ∗(x))

f (x) : spatial structure of the mode, A(t) its time evolution.

Basic idea (Landau 1944): A(t) grows exponentially as the solution of

dA

dt
= σA, σ temporal growth rate

This equation can be viewed as a Taylor series expansion of dA/dt in powers of A,
truncated at first order. For problems invariant under time translation, the

equation for A must be invariant under the rotations A→ Aeiφ. The lowest order
term satisfying this condition is |A|2A. Hence the Landau equation

dA

dt
= σA− κ|A|2A.

The unkown coefficient κ can be determined by means of a perturbation
expansion for small amplitude.
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Nonlinear dynamics with few degrees of freedom

Calculations of the Landau constants

The Landau constant has been calculated for the major instabilities, through the
expansion of the governing equations in power series of the amplitude.

Rayleigh-Bénard problem: κr is positive, corresponding to supercritical
pitchfork bifurcation (Gor’kov 1957, Malkus & Veronis 1958)

Taylor-Couette flow: same conclusion (see Chossat & Iooss 1994)

Plane Poiseuille flow: the instability at Re = 5772 is subcritical: no saturation
by the cubic term (Stuart 1958, Watson 1960). More work is needed...

The expansion procedure is illustrated below with nonlinear oscillators.
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Nonlinear dynamics with few degrees of freedom

Van der Pol oscillator: saturation of the amplitude (1927)

d2u

dt2
− (2εµ− u2)

du

dt
+ ω2

0u = 0, µ = O(1), ε� 1.

The fixed point (u, du/dt) = (0, 0) is a stable focus for µ < 0, unstable for µ > 0.

Growth rate εµ� ω0: slow variation of the amplitude expected

For µ > 0, saturation expected for u ∼ ε1/2.

Hence, u(t) sought for as (multiple scale expansion)

u(t) = ε1/2ũ(t,T ), T = εt, ũ = u0 + εu1 + ε2u2 + ...
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Nonlinear dynamics with few degrees of freedom

Van der Pol: solution at order ε0

At the dominant order, the linear problem to solve is

Lu0 = 0 with L =
∂2

∂τ 2
+ ω2

0

with solution

u0 =
1

2

(
A(T )eiω0τ + A(T )∗e−iω0τ

)
.
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Nonlinear dynamics with few degrees of freedom

Van der Pol: solution at order ε1

At the next order, the linear nonhomogeneous problem to solve is

Lu1 = −2
∂2u0

∂τ∂T
+ (2µ− u2

0)
∂u0

∂τ

with r.h.s. known from the previous step, so that:

Lu1 = iω0 (µA− dA

dT
) eiω0τ − iω0

8

(
|A|2Aeiω0τ + A3e3iω0τ

)
+ c.c.,

Cancellation of the resonant forcing (solvability condition) leads to

dA

dT
= µA− κ|A|2A, κ =

1

8
(Landau equation)

A = a(T )eiφ(T ) −→ da

dT
= µa− κa3,

dφ

dT
= 0.

Supercritical Hopf bifurcation at µ = 0

The nonlinearity saturates the amplitude.
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Nonlinear dynamics with few degrees of freedom

Van der Pol: asymptotic vs. numerical solutions
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← Numerical solution

Farther from threshold

!1 0 1
!1

0

1

u

 d
u/

dt

(a)

!2 0 2

!2

0

2

u

 d
u/

dt
(b)

19th September 2015 59 / 95



Nonlinear dynamics with few degrees of freedom

Duffing oscillator: frequency correction

d2u

dt2
+ u + εu3 = 0, µ = O(1), ε� 1.

Can be written:
d2u

dt2
= −V ′(u), V (u) =

u2

2
+ ε

u4

4
,

!5 0 5
!5

0

5

10

15

u

V

! = !0.1

! = 0.1
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Nonlinear dynamics with few degrees of freedom

Duffing: multiple scale analysis

Expand as before u(t) = u0(τ,T ) + εu1(τ,T ) + ...

−→ Lu0 = 0 with L =
∂2

∂τ 2
+ 1,

Lu1 = −2
∂2u0

∂τ∂T
− u3

0 .

The solvability condition at order ε gives the Landau equation

dA

dT
=

3i

8
|A|2A (no linear term)

A = a(T )eiφ(T ) −→ da

dT
= 0,

dφ

dT
=

3

8
a2.

Hence the final solution:

u(t) = a0 cos(ωt + φ0) +O(ε), ω = 1 +
3

8
εa2

0 +O(ε2).
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Nonlinear dynamics with few degrees of freedom

Duffing: asymptotic vs. numerical solutions

0 2 4 6 8 10 12
!1

0

1

t/2!

u

dashed: O(ε0) solution

dashed-dotted: O(ε1) solution

plain curve: numerical solution
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Nonlinear dynamics with few degrees of freedom

Derivation of the Landau equation from the
Kuramoto-Sivashinsky (KS) equation

∂tu + 2V u∂xu + R ∂xxu + S ∂xxxxu = 0.

Normal modes ∝ eσt+i(ωt−kx) → dispersion relation:

σ = Rk2 − Sk4, ω = 0

0 1 2
-10

-8

-6

-4

-2

0

2

 R = 0.5  R = 2

 k

 σ

S = 1
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Nonlinear dynamics with few degrees of freedom

KS: amplitude expansion

Search for periodic solutions with wavelength L = 2π/k1.
Rescale u, x and t so that k1 = 1, S = 1, and expand in Fourier series

u(x , t) =
1

2

N∑
n=−N

An(t)einx , with A−n = A∗n.

Assume An ∼ εn (to be checked a posteriori), and keep the first three harmonics:

dA1

dt
= σ1A1 − iVA∗1A2 +O(A5

1),

dA2

dt
= σ2A2 − iVA2

1 +O(A4
1),

dA3

dt
= σ3A3 − 3iVA1A2 +O(A5

1).
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Nonlinear dynamics with few degrees of freedom

KS: Reduction to the central manifold

Close to threshold, d/dt ∼ σ1 � 1, and |σn| � σ1, so that

A2 =
iV

σ2
A2

1 +O(A4
1),

A3 =
3iV

σ3
A1A2 +O(A5

1) ∼ − 3V 2

σ2σ3
A3

1.

→ All the harmonics are ‘slaved’ to the fundamental.

The dynamics of the fundamental is governed by the Landau equation

dA1

dt
= σ1A1 − κ|A1|2A1 +O(A5

1), κ = −V 2

σ2
> 0

→ Supercritical Hopf bifurcation at R = 1.
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Nonlinear dynamics with few degrees of freedom

Illustration: waves at a sheared interface (Barthelet, Charru & Fabre 1995)

Two-layer Couette flow experiments in a annular channel, of mean radius R = 0.4
m.
The interface between the two viscous fluids becomes unstable beyond some
critical upper plate velocity U: a long wave grows with λ = 2πR.

Saturated wave just below the threshold, just above, and farther:
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Nonlinear dynamics with few degrees of freedom

Sheared interface (2): bifurcation diagram

Bifurcation diagram (no hysteresis), and saturation time:
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Nonlinear dynamics with few degrees of freedom

Sheared interface (3): dynamics of the harmonics

Check that A2 ∝ A2
1 and A3 ∝ A3

1 as predicted by the theory?

Time evolution of the harmonics 1
2 An(t)ein(k1x−ω0

1t) + c.c., with amplitudes

An(t) = |An(t)|eiφn(t), obtained by pass-band filtering about the frequency nω0
1 .

Modulus |An(t)| and slow phases φn(t) obtained by Hilbert transform:

|A2|/|A1|2

|A3|/|A1|3

φ2 − 2φ1

φ3 − 3φ1
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Nonlinear dynamics with few degrees of freedom

Sheared interface (4): experimental center manifold

|A1|/|A1,sat |
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Nonlinear dynamics with few degrees of freedom

Sheared interface (5): farther from threshold...

|A2|/|A2,sat |

|A1|/|A1,sat |

Saturated wave:

λ = 2πR or 1
2 2πR
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Nonlinear dispersive waves

6. Nonlinear dispersive waves

Surface gravity waves of amplitude ’not small’ are not sinusoidal

The dispersion relation ω2
0 = gk0 is not accurately satisfied

How harmonics can propagate with the same velocity as the fundamental?

What is the stability of finite amplitude waves?
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Nonlinear dispersive waves

Finite amplitude gravity waves: Stokes 1847

Using a series expansion in powers of the wave slope ε = k0a0, Stokes (1847)
found the profile of the free surface η(x , t)

η(x , t)

a0
=
ε

2
+ cos θ +

ε

2
cos 2θ +

3ε2

8
cos 3θ +O(ε3),

with phase θ = k0x − ωt and frequency

ω = ω0

(
1 +

1

2
ε2 +O(ε4)

)
, ω2

0 = gk0.

0 2π 4π

−1

0

1

 kx

 η
/a sinus

Stokes
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Nonlinear dispersive waves

The Stokes wave is unstable
(Benjamin & Hasselman 1967)

The progressive wave train (λ = 2.2 m), degenerates into a series of wave groups,
and eventually disintegrates:

near the wave-maker

60 m downstream
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Nonlinear dispersive waves

The Benjamin-Feir instability
(Benjamin & Feir 1967)

The instability of gravity waves is a generic instability of dispersive waves, of wave
number k0, to perturbations with nearby wave numbers k0 + δk , now known as a
side-band instability.

These perturbations grow exponentially via a resonance mechanism when

δk2

k2
0

< 8(k0a0)2,

The two most highly amplified perturbations are those with wave numbers
k0(1± 2k0a0), and their growth rate is

σmax =
ω0

2
(k0a0)2.
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Nonlinear dispersive waves

Experimental validation of the theory
(Lake & Yuen 1977)

x = 5 ft

x = 30 ft

5 ft 30 ft
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Nonlinear dispersive waves

Experimental validation of the theory (2)
(Lake & Yuen 1977)

Downstream distance (feet)

S
q

u
ar

ed
m

o
d

u
la

ti
on

am
p

lit
u

d
e

← Benjamin & Feir
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Nonlinear dispersive waves

Model problem: a chain of coupled oscillators

In the long-wave limit and with appropriate choice of the time, mass and length
scales, the equation of motion reduces to the nonlinear Klein-Gordon equation

∂2u

∂t2
− ∂2u

∂x2
= −V ′(u), V (u) =

u2

2
+ γu4, γ =

1

24

Dispersion relation of waves with infinitesimal amplitude (no instability):

ω2 = 1 + k2.
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Nonlinear dispersive waves

Model problem (1): nonlinear Klein-Gordon wave

Seek a traveling wave solution propagating in the x-direction (c = ω/k > 0) as

u(x , t) =
1

2

N∑
n=−N

εAn(t)ei(knx−ωnt),

The time scale of the nonlinear interactions is of order ε−2. Introducing the slow
time scale T = ε2t, we obtain the amplitude equation for the nth mode:

dAn

dT
= − iγ

2ωn

∑
kp+kq+kr =kn

ApAqAre
i(ωn−ωp−ωq−ωr )T/ε2

.

This interaction leads to remarkable solutions, in particular, when the frequencies
satisfy the very special resonance condition

ωp + ωq + ωr = ωn.
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Nonlinear dispersive waves

Model problem (2): nonlinear Klein-Gordon wave

Let us consider the resonant interaction of a wave of wave number k0 with itself
(self-interaction). The summation runs over 23 triads (±k0,±k0,±k0), only three
satisfy the resonance condition: (k0, k0,−k0), (k0,−k0, k0), and (−k0, k0, k0).

The amplitude equation for A0 then reduces to

dA0

dT
= −iβA2

0A
∗
0 , β =

3γ

2ω0
, ω0 =

√
1 + k2

0 .

with solution A0 = a0e
−iβa2

0T , a0 = O(1) real.

Returning to the original angular variable

u(x , t) = εa0 cos(k0x − ωt) +O(ε3), ω = ω0 + β(εa0)2

The frequency and speed of the wave are modified by the self-interaction due to
the cubic nonlinearity: they depend on the amplitude.
The frequency correction is the same as that of a Duffing oscillator.
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Nonlinear dispersive waves

Model problem (3): stability of the nonlinear wave

Consider the effect of a perturbation of the monochromatic wave in the form of
two waves with wave numbers close to k0:

k0 ± εK with K = O(1), frequencies ω±, amplitudes |A±| � |A0|.

Keeping only the dominant terms, the amplitude equations reduce to

dA−
dT

= −iβa2
0

(
2A− + A∗+e

i(Ω−2βa2
0)T
)

dA+

dT
= −iβa2

0

(
2A+ + A∗−e

i(Ω−2βa2
0)T
)
.

with Ω =
1

ε2
(ω+ + ω− − 2ω0) ≈ ω′′0 K 2 = O(1), ω′′0 =

∂2ω

∂k2
(k0) = ω−3

0 .

This system can be made autonomous by a rotation of A± in the complex plane,
and has nontrivial solutions ∝ eσT if (dispersion relation)

σ2 + βω′′0 a
2
0 K

2 +
ω′′20

4
K 4 = 0.
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Nonlinear dispersive waves

Model problem (4): stability of the nonlinear wave

0 0.5 1 1.5
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|K|/Koff

#
r/#

re
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A necessary condition for instability (σr 6= 0) is βω′′0 < 0.

Then, the wave is unstable to side-band perturbations of wave numbers

k = k0 ± εK with K < Koff = 2a0

√
−β/ω′′0 .

The two most amplified wave numbers are

kmax = k0 ± 1√
2
εKoff .
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Nonlinear dispersive waves

The Stokes wave instability revisited

The instability condition βω′′0 < 0 established for the Klein–Gordon wave is
actually general: it is valid for any dispersive nonlinear wave, with β the
coefficient of the nonlinear correction β(εa0)2 to the frequency.

For example, for a gravity wave we obtain from the dispersion relation for
finite-amplitude waves found by Stokes:

ω′′0 = − ω0

4k2
0

, β =
1

2
ω0k

2
0 .

The instability condition is then

(εK )2 < 8k4
0 (εa0)2

identical to that obtained by Benjamin and Feir (1967) in their solution of the
hydrodynamical problem! This is no accident, as the instability results from a
competition between the linear dispersion and the nonlinearity, the effect of the
latter being contained entirely in the nonlinear correction of the wave frequency.
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Nonlinear dispersive waves

Alternative analysis: dynamics of a wave packet
(Benney & Newell 1967; Stuart & DiPrima 1978)

A wave packet centered on the wave number k0 propagating in the direction of
increasing x can be represented as the Fourier integral

u(x , t) =
1

2
A(x , t)ei(k0x−ω0t) + c.c.

where ω0 = ω(k0) (real) and the envelope A(x , t) of the wave packet is defined as

A(x , t) =

∫ +∞

0

û(k)ei(k−k0)x−i(ω(k)−ω0)tdk.

Expand ω(k) in Taylor series about k0 and truncate at second order:

ω − ω0 = cg(k − k0) +
ω′′0
2

(k − k0)2 with cg =
∂ω

∂k
(k0), ω′′0 =

∂2ω

∂k2
(k0).

We recognize the general solution of the envelope equation

i
∂A

∂t
= −icg

∂A

∂x
+ α

∂2A

∂x2
, α =

1

2
ω′′0 .
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Nonlinear dispersive waves

Nonlinear dynamics: the nonlinear Schrödinger equation

According to the above linear envelope equation, the width of the wave packet
increases linearly with time due to dispersion, while its amplitude decreases as
1/
√
t. Nonlinearity may counteract dispersion.

For problems invariant under translations x → x + ξ and t → t + τ , the nonlinear
envelope equation must be invariant under the transformation A→ Aeiφ. Hence
the nonlinear Schrödinger (NLS) equation:

i
∂A

∂t
= −icg

∂A

∂x
+ α

∂2A

∂x2
− β |A|2A.

If the problem is invariant under reflections x → −x and t → −t, β is real.

For the coupled pendulum problem, a multiple scale analysis shows β = 3γ/2ω0.
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Nonlinear dispersive waves

Stability of a quasi-monochromatic wave (1)

The nonlinear Schrödinger equation admits the spatially uniform solution

A0 = a0e
i(Ωt+Φ), a0 = |A0| real, Ω = βa2

0,

which corresponds to the unmodulated traveling wave

u(x , t) = a0 cos(k0x − ωt + Φ), ω = ω0 + βa2
0,
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Nonlinear dispersive waves

Stability of a quasi-monochromatic wave (2)

Perturb A0 as
A(x , t) = (a0 + a(x , t))ei(Ωt+Φ+ϕ(x,t))

substitute in the NLS, linearize and separate the real and imaginary parts:

∂ta = αa0 ∂xxϕ,

∂tϕ = 2βa0a− (α/a0) ∂xxa.

This linear system admits solutions of the form eσt−ipx , with (dispersion relation):

σ2 + 2αβa2
0 p

2 + α2 p4 = 0.
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f ← αβ < 0

The Benjamin-Feir (side-band) instability is exactly recovered.
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Nonlinear dynamics of dissipative systems

7. Nonlinear dynamics of dissipative systems

What happens when the size of the system is large compared with the
wavelength of an unstable mode for R ' Rc ?

We first consider systems with the translational and reflectional symmetries

We then consider propagating waves (no reflectional symmetry)
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Nonlinear dynamics of dissipative systems

Linear analysis, for ω = ∂ω/∂k = 0 at (k ,R) = (kc ,Rc)

Close to threshold (ε2 = r − rc � 1 with r = R/Rc ), expand the growth rate:

τc σ(k, r) = (r − rc)− ξ2
c(k − kc)2 + ... ,

where τc and ξc are characteristic time and length scales defined as

1

τc
=
∂σ

∂r
,

ξ2
c

τc
= −1

2

∂2σ

∂k2
.
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Nonlinear dynamics of dissipative systems

Dynamics of a wave packet

The perturbation of the base state can be written as

u(x , t) =
1

2
A(x , t)eikcx + c.c.,

where the envelope A(x , t) of the wave packet is defined as

A(x , t) =

∫ +∞

0

û(k)ei(k−kc)x+σ(k)tdk.

Replacing σ(k) by its Taylor series, we recognize the general solution of the
envelope equation

τc
∂A
∂t

= (r − rc)A+ ξ2
c

∂2A
∂x2

.

For systems invariant under space and time translation, the weakly noninear
dynamics is governed by the Ginzburg–Landau envelope equation with real κ:

τc
∂A
∂t

= (r − rc)A+ ξ2
c

∂2A
∂x2

− κ|A|2A,
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Nonlinear dynamics of dissipative systems

Saturated pattern, and linear stability (1)

Periodic pattern. For κ > 0, the Ginzburg–Landau equation possesses a
continuous family of uniform, stationary solutions

U0(x , t) = u0 cos(k0x + Φ)

of amplitude u0 and wave number k0 defined as

u0 =
√
r − rc

√
1− q2

0

κ
, k0 = kc + εq0/ξc, −1 ≤ q0 ≤ 1.

Stability. Perturb the amplitude as a0 + ã(X ,T ) and the phase as Φ + ϕ(X ,T ),
linearize, and find

∂T ã = −2a2
0 ã + ∂XX ã− 2a0q0 ∂Xϕ,

∂Tϕ = −2q0

a0
∂X ã + ∂XXϕ.

This system admits solutions ∝ eipX +σT , with (dispersion relation)

σ± = −(a2
0 + p2)±

√
a4

0 + 4q2
0p

2.
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Nonlinear dynamics of dissipative systems

Saturated pattern, and linear stability (2)

The amplitude mode is stable (σ− < 0), and slaved to the phase mode which is
unstable (σ+ > 0) for q2

0 > 1/3.

It can be shown that the instability is subcritical: no saturation mechanism.
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Nonlinear dynamics of dissipative systems

Illustration: Rayleigh-Bénard convection (1)

The roll pattern, initially ‘compressed’ (thermal impression technique), relaxes to
larger wavelength through a ‘cross-roll’ instability.

t = t0

t = t0 + 52 mn
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Nonlinear dynamics of dissipative systems

Illustration: Rayleigh-Bénard convection (2)

The roll pattern, initially ‘stretched’ (thermal impression technique), relaxes to
smaller wavelength through a ‘zig-zag’ instability.

t = t0

t = t0 + 127 mn
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Nonlinear dynamics of dissipative systems

Travelling dissipative waves

Consider a wave packet near the instability threshold (σ = 0 and ω = ωc at the
critical point (kc ,Rc )), expand the dispersion relation, take the inverse Fourier
transform, add the dominant nonlinear term |A|2A.

We obtain the complex Ginzburg-Landau (CGL) equation

τc

(
∂A
∂t

+ cg
∂A
∂x

)
= (r − rc)A+ (ξ2

c +
i τcω

′′
c

2
)
∂2A
∂x2

− κ|A|2A,
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Nonlinear dynamics of dissipative systems

Finite-amplitude travelling waves, and their stability

The CGL equation possesses a continuous family of travelling wave solutions.
Instability corresponds to negative diffusion in the equation of the phase
perturbation:

D(q0) = 1 + c1c2 − 2q2
0 (1 + c2

2 )/(1− q2
0), −1 ≤ q0 ≤ 1.

The Benjamin-Feir and Eckhaus instability are unified (Stuart & DiPrima 1978).
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