Ecole d'été
 Mécanique Théorique Quiberon

septembre 2015

Cours 4

le problème en vitesses

Equilibre:

$$
\frac{\partial \dot{s}_{i j}}{\partial x_{i}}+\dot{g}_{j}=0
$$

Conditions aux limites

$$
\dot{s}_{i j} n_{i}=\dot{f}_{j} \operatorname{sur} S_{f}
$$

$$
v_{j}=d_{j} \operatorname{sur} S_{v}
$$

Elasticité

Cadre hyperélastique Densité d'énergie élastique

$$
\begin{gathered}
E(\mathbf{F}) \\
s_{i j}=\frac{\partial E}{\partial F_{j i}} \\
\dot{s}_{i j}=c_{i j k l} \dot{F}_{j i}=c_{i j k l} \frac{\partial v_{l}}{\partial x_{k}} \\
c_{i j k l}=c_{k l i j}=\frac{\partial^{2} E}{\partial F j i \partial F_{l k}}
\end{gathered}
$$

Elasto-plasticité

$$
\hat{\sigma}_{i j}=H_{i j k l} D_{k l}
$$

Charge ou décharge élastique

$$
\mathbf{H}=\mathbf{C} \text { si } \frac{\partial f}{\partial \boldsymbol{\sigma}}: \mathbf{C}: \mathbf{D}<0
$$

Charge plastique

$$
\mathbf{H}=\mathbf{C}-\frac{\mathbf{C}: \frac{\partial f}{\partial \sigma} \otimes \mathbf{C}: \frac{\partial f}{\partial \sigma}}{h+\frac{\partial f}{\partial \sigma}: \mathbf{C}: \frac{\partial f}{\partial \sigma}} \text { si } \frac{\partial f}{\partial \boldsymbol{\sigma}}: \mathbf{C}: \mathbf{D} \geq 0
$$

Module tangent symétrique

Rappel

Problème en vitesse linéaire en élasticité

Problème en vitesses non linéaire en élastoplasticité mais dans le cas symétrique, on a vu que le problème de la première bifurcation est ramené à la recherche de la première bifurcation du solide linéaire de comparaison
condition de localisation non affectée par la symétrie du module tangent

Le problème en vitesses

$$
\begin{gathered}
\mathcal{A}_{i}(\mathbf{v})=\frac{\partial\left[H_{i j k l}^{L}(\mathbf{x}) \frac{\partial v_{l}}{\partial x_{k}}\right]}{\partial x_{i}}+g_{j}=0 \text { dans } V \\
\mathcal{B}_{j}(\mathbf{v})=L_{i j k l}^{L}(\mathbf{x}) \frac{\partial v_{l}}{\partial x_{k}} n_{i}=0 \text { sur } S_{f} \\
\mathcal{C}_{j}(\mathbf{v})=v_{j}=d_{j} \operatorname{sur} S_{v}
\end{gathered}
$$

Problème linéaire en dimension finie

T opérateur linéaire de E \longrightarrow F $\operatorname{dim} \mathrm{E}=\operatorname{rang}(\mathrm{T})+\operatorname{dim} \operatorname{Ker}(\mathrm{T})$

$$
\begin{aligned}
\operatorname{Coker}(\mathrm{T}) & =\mathrm{F} / \operatorname{Im}(\mathrm{T}) \\
\operatorname{dim} \operatorname{Coker}(\mathrm{T}) & =\operatorname{codim}(\operatorname{Im} \mathrm{T})
\end{aligned}
$$

et donc

$$
\operatorname{Ind}(T)=\underset{\text { indépendant de l'opérateur }}{\operatorname{dim} \operatorname{Ker}(T)-\operatorname{codim}(\operatorname{Im} T)=\operatorname{dim} E-\operatorname{dim} F}
$$

T est injectif sis il est surjectif

Problème linéaire en dimension finie

$$
A x=b
$$

1) $\operatorname{det}(A) \neq 0$ solution unique
2) $\operatorname{det}(A)=0 \quad$ nbre fini de solutions si $A^{*} b=0$

Le cas de la dimension infinie:

 Alternative de FredholmK opérateur compact

$$
u=K u+f
$$

1) La solution est unique pour tout f
2) ou alors u-Ku=0 a un nombre fini (N) de solutions linéairement indépendantes et dans ce cas l'equation complète a N solutions linéairement indépendantes di f est dans le noyau de l'orthogonal de I-K*

Le cas de la dimension infinie: Opérateurs de Fredholm

A linéaire et continu est Fredholm si et seulement si

1) A a un noyau de dimension fini
2) A a une image fermée de codimension finie

Le problème en vitesses

L'opérateur associé au problème en vitesses

$$
\mathcal{T}=\left(\left(\mathcal{A}_{j}\right),\left(\mathcal{B}_{j}\right),\left(\mathcal{C}_{j}\right)\right)
$$

est Fredholm si et seulement si

1) Le système différentiel \mathcal{A}_{j} est elliptique en tout point de \vee
2) Les conditions aux limites \mathcal{B}_{j} et \mathcal{C}_{j} vérifient la condition complémentaire en tout point de la frontière de V

Ellipticité des équations d'équilibre (en vitesses)

Le système est dit elliptique si pour tout point $\mathbf{x}_{0} \mathrm{de} \mathrm{V}$ il n'a aucune solution de la forme

$$
\mathbf{v}(\mathbf{x})=\mathbf{g} e^{i \xi \mathbf{n} \cdot \mathbf{x}}
$$

sur l'espace entier
$\operatorname{Det}[\mathbf{n} . \mathbf{H} . \mathbf{n}] \neq 0 \forall \mathbf{n}$ en tout point \mathbf{x}_{0} de V

Condition complémentaire

Pour tout point de la frontière \mathbf{x}_{0}, le problème linéaire sur le

$$
\begin{aligned}
& \begin{array}{c}
\text { demi-espace } \\
\frac{\partial\left[H_{i j k l}^{L}\left(\mathbf{x}_{0}\right) \frac{\partial v_{l}}{\partial x_{k}}\right]}{\partial x_{i}}=0 \\
L_{i j k l}^{L}\left(\mathbf{x}_{0}\right) \frac{\partial v_{l}}{\partial x_{k}} n_{i}=0
\end{array}
\end{aligned}
$$

n'a aucune solution bornée de la forme

$$
\mathbf{v}(\mathbf{x})=z\left(x_{3}\right) \exp i\left(k_{1} x_{1}+k_{2} x_{2}\right)
$$

Perte de la condition complémentaire -> Modes de surfaces longueur d'onde indéterminée

Exemple:

Essai de traction en déformation plane (Hill, Hutchinson, 1975)

Loi de comportement linéaire en vitesses

$$
\begin{aligned}
\hat{\sigma}_{11}-\hat{\sigma}_{22} & =2 \mu^{\star}\left(D_{11}-D_{22}\right) \\
\hat{\sigma}_{12} & =2 \mu D_{12}
\end{aligned}
$$

Biot, 1965

$$
\begin{array}{r}
\dot{s}_{11}=\hat{\sigma}_{11}-\sigma_{1} \frac{\partial v_{1}}{\partial x_{1}} \\
\dot{s}_{22}=\hat{\sigma}_{11} \\
\dot{s}_{12}=\hat{\sigma}_{12}-\frac{1}{2} \sigma_{1} \frac{\partial v_{1}}{\partial x_{2}}-\frac{1}{2} \sigma_{1} \frac{\partial v_{2}}{\partial x_{1}} \\
\dot{s}_{21}=\hat{\sigma}_{21}-\frac{1}{2} \sigma_{1} \frac{\partial v_{1}}{\partial x_{2}}-\frac{1}{2} \sigma_{1} \frac{\partial v_{2}}{\partial x_{1}}
\end{array}
$$

Equations du problème

$$
\begin{array}{r}
\frac{\partial \dot{s}_{i j}}{\partial x_{i}}=0 \\
\frac{\partial}{\partial x_{1}} \frac{1}{2}\left(\dot{s}_{11}-\dot{s}_{22}\right)+\frac{\partial}{\partial x_{2}} \dot{s}_{21}=-\frac{\partial}{\partial x_{1}} \frac{1}{2}\left(\dot{s}_{11}+\dot{s}_{22}\right) \\
\frac{\partial}{\partial x_{1}} \frac{1}{2}\left(\dot{s}_{11}-\dot{s}_{22}\right)-\frac{\partial}{\partial x_{2}} \dot{s}_{12}=\frac{\partial}{\partial x_{1}} \frac{1}{2}\left(\dot{s}_{11}+\dot{s}_{22}\right)
\end{array}
$$

Incompressibilité

$$
v_{1}=\frac{\partial \psi}{\partial x_{2}}
$$

$$
v_{2}=-\frac{\partial \psi}{\partial x_{1}}
$$

$$
\left(\mu+\frac{1}{2} \sigma\right) \frac{\partial^{4} \psi}{\partial x_{1}^{4}}+2\left(2 \mu^{\star}-\mu\right) \frac{\partial^{4} \psi}{\partial x_{1}^{2} \partial x_{2}^{2}}+\left(\mu-\frac{1}{2} \sigma\right) \frac{\partial^{4} \psi}{\partial x_{2}^{4}}=0
$$

Solution

$$
\begin{gathered}
\psi=v\left(x_{2}\right) \cos \left(c_{1} x_{1}\right) \\
v_{1}=v^{\prime}\left(x_{2}\right) \cos \left(c_{1} x_{1}\right), \quad v_{2}=c_{1} v\left(x_{2}\right) \sin \left(c_{1} x_{1}\right)
\end{gathered}
$$

condition aux limites en vitesses

$$
c_{1}=m \pi / 2 a_{1}, \quad m=1,2, \ldots
$$

condition aux limites sur Les côtés

$$
\begin{aligned}
& v^{\prime \prime}+c_{1}^{2} v=0, \quad x_{2}= \pm a_{2} \\
& \left(\mu-\frac{1}{2} \sigma\right) v^{\prime \prime \prime}=\left(4 \mu^{*}-\mu-\frac{1}{2} \sigma\right) c_{1}^{2} v^{\prime}, \quad x_{2}= \pm a_{2}
\end{aligned}
$$

Modes symétriques
Modes antisymétriques

$$
v\left(x_{2}\right)=\operatorname{Re}\left\{A \sin \left(c_{2} x_{2}\right)\right\}
$$

$$
v\left(x_{2}\right)=\operatorname{Re}\left\{A \cos \left(c_{2} x_{2}\right)\right\}
$$

Solution

$$
\left(\mu+\frac{1}{2} \sigma\right) c_{1}^{4}+2\left(2 \mu^{\star}-\mu\right) c_{1}^{2} c_{2}^{2}+\left(\mu-\frac{1}{2} \sigma\right) c_{2}^{4}=0
$$

E: 4 racines complexes

$$
2 \mu^{*}>\mu-\sqrt{\mu^{2}-\frac{1}{4} \sigma^{2}}
$$

$H: 4$ racines réelles

$$
2 \mu^{\star}<\mu-\sqrt{\mu^{2}-\frac{1}{4} \sigma^{2}}
$$

$$
\mu<\frac{1}{2} \sigma
$$

Regime elliptique

$$
\begin{gathered}
\frac{q \sin \left(2 p c_{1} a_{2}\right)}{p \sinh \left(2 q c_{1} a_{2}\right)}= \pm \frac{\sqrt{\left(\frac{2 \mu-\sigma}{2 \mu+\sigma}\right)-\left(1-\frac{4 \mu^{*}}{\sigma}\right)}}{\sqrt{\left(\frac{2 \mu-\sigma}{2 \mu+\sigma}\right)+\left(1-\frac{4 \mu^{*}}{\sigma}\right)}} \\
p^{2}-q^{2}=\frac{2 \mu-4 \mu^{*}}{2 \mu-\sigma}, \quad p^{2}+q^{2}=\sqrt{\left(\frac{2 \mu+\sigma}{2 \mu-\sigma}\right)} \\
\gamma=c_{1} a_{2}=m \pi a_{2} / 2 a_{1}
\end{gathered}
$$

Régime hyperbolique

$$
\begin{aligned}
& \frac{q \tan \left(p c_{1} a_{2}\right)}{p \tan \left(q c_{1} a_{2}\right)}=\left(\frac{q^{2}-1}{p^{2}-1}\right)^{2} \\
& \frac{q \tan \left(q c_{1} a_{2}\right)}{p \tan \left(p c_{1} a_{2}\right)}=\left(\frac{q^{2}-1}{p^{2}-1}\right)^{2}
\end{aligned}
$$

$$
\begin{gathered}
\frac{1}{2}\left(p^{2}+q^{2}\right)=\frac{2 \mu-4 \mu^{*}}{2 \mu-\sigma}, \quad \frac{1}{2}\left(p^{2}-q^{2}\right)=\frac{\sqrt{ }\left\{\left(4 \mu^{*}-2 \mu\right)^{2}+\left(\sigma^{2}-4 \mu^{2}\right)\right\}}{2 \mu-\sigma} \\
\gamma=c_{1} a_{2}=m \pi a_{2} / 2 a_{1}
\end{gathered}
$$

Régime parabolique

$$
\begin{gathered}
\frac{q \tan \left(p c_{1} a_{2}\right)}{p \tanh \left(q c_{1} a_{2}\right)}=\left(\frac{q^{2}+1}{p^{2}-1}\right)^{2} \\
\frac{q \tanh \left(q c_{1} a_{2}\right)}{p \tan \left(p c_{1} a_{2}\right)}=-\left(\frac{q^{2}+1}{p^{2}-1}\right)^{2} \\
\frac{1}{2}\left(p^{2}-q^{2}\right)=\frac{4 \mu^{*}-2 \mu}{\sigma-2 \mu}, \quad \frac{1}{2}\left(p^{2}+q^{2}\right)=\frac{\sqrt{ }\left\{\left(4 \mu^{*}-2 \mu\right)^{2}+\left(\sigma^{2}-4 \mu^{2}\right)\right\}}{\sigma-2 \mu} \\
\gamma=c_{1} a_{2}=m \pi a_{2} / 2 a_{1}
\end{gathered}
$$

Modes de surface

$$
\frac{\sigma}{4 \mu^{*}}=1+\frac{\sigma}{4 \mu^{*}} \sqrt{ }\left(\frac{2 \mu-\sigma}{2 \mu+\sigma}\right)
$$

(a)

(b)

Effets non locaux élasto-plasticité

$$
D_{i j}=D_{i j}^{e}+D_{i j}^{p}
$$

élasticité

$$
\hat{\sigma}_{i j}=C_{i j k l}\left(D_{k l}-D_{k l}^{p}\right)
$$

Fonction de charge

$$
\begin{gathered}
f(\boldsymbol{\sigma}, R) \leq 0 \\
D_{i j}^{p}=\lambda \frac{\partial f}{\partial \boldsymbol{\sigma}} \\
\dot{p}=\lambda \frac{\partial f}{\partial R} \\
\lambda \geq 0, f \leq 0 \text { and } \lambda \dot{f}=0
\end{gathered}
$$

Loi d'écoulement

Loi d'écrouissage

